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Real physical space is derived from a mathematical space constructed as a 
tessellation lattice of primary balls, or superparticles. Mathematical 
characteristics, such as distance, surface and volume, generate in the fractal 
tessellation lattice the basic physical notions (mass, particle, the particle’s de 
Broglie wavelength and so on) and the corresponding fundamental physical 
laws. Submicroscopic mechanics developed in the tessellattice easily results in 
the conventional quantum mechanical formalism at a larger atomic scale and 
Newton’s gravitational law at a macroscopic scale. 

1. Introduction 

Although Poincaré (1905a) was the first to write the relativistic transformation 
law for charge density and velocity of motion, Einstein’s (1905) special 
relativity article received wide recognition, perhaps due to his introduction of a 
radically new abstract approach to fundamentals, which then culminated in his 
famous theory of general relativity (Einstein, 1916). Due to its predictions, 
which were verified experimentally, abstract theoretical concepts took root in 
the minds of a majority of physicists. Einstein’s approach resembled rather a 
generalized description that descended to particulars through a series of 
postulated axioms. His general relativity considers how matter and geometry, 
constructed in empty space, coexist and influence each other, though matter is 
not an intrinsic property of space. 

Einstein’s thoughts regarding an aether were expressed in his well-known 
lecture (Einstein, 1920). He noted that since space was endowed with physical 
qualities, an aether must exist. Then he mentioned that, according to general 
relativity, space without an aether is unthinkable (light would not propagate; 
there would not any space-time intervals in the physical sense, etc.). 
Nevertheless, Einstein stressed that this aether might not be thought of as 
endowed with quality characteristic of a ponderable medium, consisting of 
parts that might be tracked through time. However, the basic issue remained: 
Why could the aether not be associated with a substrate? This was never 
clarified by Einstein completely. 

The hypothesis of an aether as a material substrate responsible for 
electromagnetic wave propagation has been tested by many researchers 
(Miller, 1933; Essen, 1955; Azjukowski, 1993). A new optical method of the 
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first order was proposed and implemented by Galaev (2002) for measurements 
of the aether-drift velocity and kinematic viscosity of aether. Galaev’s results 
correlate well with the results of other researchers quoted above. 

Observability, reproducibility and repeatability of aether drift effects have 
been conducted in various geographical conditions using different methods of 
measurement and in various ranges of electromagnetic waves. Overall, this 
research strongly supports the idea that the aether is a subsrate responsible for 
propagation of electromagnetic waves. These studies shed light on the negative 
results of aether wind measurements by Michelson and Morley: Their tool had 
too low a sensitivity. 

Other researchers demonstrated direct interaction of matter with a 
subquantum medium. In particular, the influence of a new “strange” physical 
field on test subjects has been shown by Baurov (2002), Benford (2002) and 
Urutskoev et al. (2002). Similar effects are described by Shipov (1997), though 
the changes in samples examined were associated with the so-called “torsion 
radiation” introduced by Shipov as a primary field that allegedly dominated 
over a vague physical vacuum long before its creation. One more 
incomprehensible phenomenon is the Kozyrev effect (Kozyrev and Nasonov, 
1978) whereby a bolometer centrally located in the focal point of a telescope 
records a signal from a star much earlier than the light signal hits the focal 
point. 

Let us briefly examine Poincaré’s studies. His research was also highly 
abstract, especially his investigations in mathematics and mathematical 
physics. Nevertheless, in physics applications, he tried to hold to natural laws 
as closely as possible. In fact, Poincaré (1905b, 1906) believed any new 
success in science was further support of determinism. In his works, he tried to 
start from a few details, which should then disclose the problem as a whole. 
Poincaré (1905b) strongly supported the idea of an aether, as he considered the 
motion of a particle to be accompanied by an aether perturbation. The idea of 
perturbation of the aether by a moving object was predominant among leading 
mathematicians and physicists up to beginning of the 20th century. 

Therefore, his idea deserves credit (if any kind of aether in fact exists). 
Poincaré treated particles as peculiar points in the aether, though he did not 
develop further ideas on its construction nor principles of the motion of 
material objects in it. Experimental facts were not abundant at that time, and 
theoretical notions of condensed matter physics, which would help one to look 
at a possible theory of aether in more detail, were lacking. Moreover, 
mathematical methods of description of space were also in an embryonic state 
at beginning of the 20th century, despite the fact it was Poincaré who proposed 
and developed new concepts and methods of the investigation of space as such. 
At that time, data were not so numerous as now, and this did not allow 
Poincaré to consolidate ideas on space and aether in a unified generalized 
concept of real space. 

However, today when abundant data are available, we may try to look at 
the possibility of unifying mathematical and physical ideas to incorporate an 
aether into space in one unified object of comprehensive study. 
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2. The constitution of space 

Many researchers are involved in the search for a theory of everything (TOE). 
However, do we yet have a “theory of something”? The problem was studied 
by Bounias (2000) on the basis of pure mathematical principles. He firmly 
believed the ultimate theory might be some mathematical principle. 

Following Bounias (2000), and Bounias and Krasnoholovets (2002, 
2003), we can explore the problem of the constitution of space in terms of 
topology, set theory and fractal geometry. Evidently, according to set theory, 
only the empty set (denoted ∅) can represent nearly nothing. If F is a part of E, 
then the remaining part of E, which does not contain F, is the complementary 
of F in E, which is denoted ( )E FC . The empty set ∅ is contained in any set E, 

i.e. },{)( EEE ∅=C , then ( )E E = ∅C . This result, together with ( )E E∅ =C , 

is known as the first law of Morgan. This allowed Bounias to conclude the 
complement of the empty set is the empty set: ( )∅ ∅ = ∅C . Following von 

Neumann, Bounias considered an ordered set, {{{ ,{ }},{ ,{ ,{ }},∅ ∅ ∅ ∅ ∅  and 

so on. By examining the set, one can count its members: ∅ = zero, 
{{ },{ }}∅ ∅ =  one and etc. This is the empty set as long as it consists of empty 

members and parts. On the other hand, it has the same number of members as 
the set of natural integers, {0, 1, 2, ..., }N n= . Although it is proper that reality 

is not reduced to enumeration, empty sets give rise to mathematical space, 
which in turn brings about physical space. So, something can emerge from 
emptiness. 

The empty set is contained in itself, hence it is a non-well-founded set, or 
hyperset, or empty hyperset. Any parts of the empty hyperset are identical, 
either a large part ( )∅  or the singleton { }∅ ; the union of empty sets is also 
the same: ( ) { } { ,{ }}∅ ∪ ∅ ∪ ∅ ∪ ∅ ∅ ∪  { ,{ },{ ,{ ,{ }}} ...∅ ∅ ∅ ∅ ∅ ∪ = ∅ . This 
is the major characteristic of a fractal structure, which means the self-similarity 
at all scales (in physical terms, from the elementary sub-atomic level to cosmic 
sizes). One empty set ∅ can be subdivided into to two others; two empty sets 
generate something ( ) ( )∅ ∪ ∅  that is larger than the initial element. 
Consequently, the coefficient of similarity is 1

2[ , 1]ρ ∈ . In other words, ρ  
realizes fragmentation when it falls within the interval 1

2] , 1[  and union when 
ρ with the interval 1

2]0, ]  yields ]0, 1[ . The coefficient of similarity allows us 
to estimate the fractal dimension of the empty hyperset, which owing to the 
interval ]0, 1[  becomes a fuzzy dimension. 

Time can be called nothing, because it is a singleton that does not have 
parts (otherwise it will be in contradiction to the definition of time as such). 
The nothingness singleton ( )∈  is absolute unique. It is the lowest boundary of 
everything existing; this is the infimum of existence. 
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4-D mathematical spaces have parts in common with 3-D spaces, which 

yields 3-D closed structures. There are then parts in common with 2-D, 1-D 
and zero dimension (points). General topology indicates the origin of time, 
which should be treated as an assembly of sections iS  of open sets. Indeed, 
fractality of space generates fuzzy dimensions (Bounias and Krasnoholovets, 
2003a), and hence a common part of a pair of open sets mW  and nW  with 
different dimensions mand n  also accumulates points of the open space. If 
m n> , then those points, which belong to mW  and would not belong to the 
section of the given sets, cannot be included in a x-D object. Bounias and 
Krasnoholovets (2002) exemplified this in the following way: “You cannot put 
a pot into a sheet without changing the shape of the 2-D sheet into a 3-D 
packet. Only a 2-D slice of the pot can be a part of a sheet.” Therefore, 
infinitely many slices, i.e. a new subset of sections with dimensionality from 0 
to 3, ensure the raw universe in its timeless form. 

Thus a physical space is one that can be provided by closed intersections 
(timeless Poincaré sections) of abstract mathematical spaces. What happens to 
these sections iS  that all belong to an embedding 4-space? A series of sections 

1 2, , ,i i iS S S+ +  etc. resembles the successive images of a movie, and only 
nothing does not move. Therefore, the difference of distribution of objects 
within two corresponding sections will mean a detectable increment of time. 
Hence time will emerge from order relations holding on these sections. 

Two successive slices show a characteristic of mathematical objects from 
one to the next section. In other words, this is a mapping. The first section 
produces some x that then becomes ( )f x  on the next one. The mapping 

between nearest sections can be treated in the framework of an indicatrix 
function 1( )x  and Uryson’s theorem. By definition, )(1 x  for any x state yields 

1( ) 0x =  if x has one property and 1( ) 1x =  if x has an alternative property. A 

combination of ( )f x  with 1( ( ))f x  makes a demonstration whose result 

depends upon whether the variable x belongs to one part of the frame in iS  or 

belongs to the same part in 1iS + . The complete function is a composition of 

the variables with their distribution. That is, the function has the structure of a 
moment, called a “moment of junction” MJ by Bounias (2000; Bounias and 

 
Figure 1. Range of things, from non-existence to something empty whose structure gives 
rise to something non-empty and up to infinity (from Bounias and Krasnoholovets, 2002). 
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Krasnoholovets 2003b). The function MJ describes the smallest increment of 
space. (One point is not at the same topological position for MJ to permit the 
change.) Such fine change of MJ also defines an increment in time—the 
minimal change. Since there is no thickness between two sections iS  and 1iS +  

the moment of junction MJ rigorously describes a differential element of 
space, which is also a differential element of time. This validates differential 
geometry from the description of the Universe. 

3. Measure, distance, metric and objects 

The concept of measure usually involves such particular features as existence 
of mappings and the indexation of collections of subsets on natural integers. 
Classically, a measure is a comparison of the measured object with some unit 
taken as a standard. The “unit used as a standard” is the part played by a gauge 
(J). A measure involves respective mappings on spaces, which must be 
provided with the rules ∩ , ∪  and C . According to Bonaly and Bounias 
(1996), in spaces of the nR  type, tessellation by balls is involved, which again 
requires a distance to be available for measurement of diameters of intervals. 
Intervals can be replaced by topological balls, and therefore evaluation of their 
diameter still needs an appropriate general definition of a distance. More 
comprehensive determinations of measure, distance, metric and objects, which 
involve topology, set theory and fractal geometry, have been made by Bounias 
and Krasnoholovets (2003a). 

In physics, a ruler is called a metric. As a rule, mathematical spaces 
including topological spaces have been treated as not endowed with a metric, 
and properties of metric spaces have not been the same as those of non-metric 
spaces. However, in 1994 Bounias (see, e.g., Bonaly and Bounias, 1996) have 
shown that a non-metric topological space does not exist! Indeed, union and 
intersection allow the introduction of the symmetric difference between two 
sets iA  and jA  

 
{ }

( , ) ( )
i

i j i j i jA
A A A A≠∪

∆ = ∪ ∩C  (1) 

i.e. the complementary of the intersection of these sets in their union. 
Symmetric difference satisfies the following properties: 0),( =∆ ji AA  if 

,ji AA =  ),(),( ijji AAAA ∆=∆
 
and ( , )i jA A∆  is contained in union of 

),( ji AA∆  and ).,( kj AA∆  This means it is a true distance and can also be 

extended to the distance of three, four and etc. sets in one, namely, 
)....,,,,( lkji AAAA∆  Since the definition of a topology implies the 

definition such a set distance, every topological space is endowed with this set 
metric. The norm of the set metric is || || ( , ).A A= ∆ ∅  Therefore, all 

topological spaces are metric spaces, -∆ metric spaces, and they are 
measurable. 

We now examine at the remaining part, i.e. the intersection of the sets. If 
they are of unequal dimensions, this intersection will be closed, i.e. the 
intersection in a closed space is closed, ( , ),i j i jA A≠∪  which signifies the 

availability of physical objects. As distances ∆ are the complementariness of 



 V. Krasnoholovets 148 

objects, the system stands as a manifold of open and closed subparts. This 
procedure subdivides the Universe into two parts: the distances and the objects. 

In general, we can imagine the universe as an immense drop containing 
N  balls. Since measurement embraces such notions as length, surface and 
volume, we may represent l—the loop distance of the universe (i.e., the 
perimeter that can be measured with a ruler)—with parameters of the N  balls. 
Indeed, let m  be the measure of the balls (length, surface, or volume of 
dimension δ  depending on what kind of the characteristics we are interested 
in). Inside a universe of dimension D we have N  times δm  approximately 
equal to D

l , so that 
 ~ ( log log ) / log .D Nδ ⋅ + lm  (2) 

Thus if we know component parts of the universe, i.e. can describe sizes and 
shapes of the topological balls, we will be able to reconstruct the large 
unknown structure. 

4. Tessellation lattice of primary balls 

Let us now examine what space-time is in the approach proposed by Bounias 
and Krasnoholovets (2002, 2003). We started from the founding element. 
Namely, it is generally recognized in mathematics that some set does exist. A 
weaker form can be reduced to the existence of the empty set. If one provides 
the empty set ( )∅  with the combination rules ( , )∈ ⊂  and the property of 
complementary ( ),C  a magma can be defined: The magma is a union of 
elements ( ),∅  which act as the initiator polygon, and complementary ( ),C  
which acts as the rule of construction; i.e., the magma is the generator of the 
final structure. This allowed Bounias to formulate the following theorem: The 
magma { , }∅∅ = ∅ C  constructed with the empty hyperset and the axiom of 
availability is a fractal lattice. Writing ( )∅∅  denotes the magma, and reflects 
the set of all self-mappings of ∅ . The space, constructed with the empty set 
cells of the magma ∅∅ , is a Boolean lattice, and this lattice ( )∅S  is provided 
with a topology of discrete space. A lattice of tessellation balls has been called 
a tessellattice, and hence the magma of empty hyperset becomes a fractal 
tessellattice. 

Introduction of the lattice of empty sets ensures the existence of a 
physical-like space. In fact, the consequence of spaces ( ),mW  ( ), ...nW  formed 
as parts of the empty set ∅  shows that the intersections have non-equal 
dimensions, which gives rise to spaces containing all their accumulating points 
forming closed sets (Bounias and Krasnoholovets, 2003a). If morphisms are 
observed, then this enables the interpretation as a motion-like phenomenon, 
when one compares the state of a section with the state of mapped section. A 
space-time-like sequence of Poincaré sections is a non-linear convolution of 
morphisms. Our space-time then becomes one of the mathematically optimal 
morphisms, and time is an emergent parameter indexed on non-linear 
topological structures guaranteed by discrete sets. That is, the foundation of the 
concept of time is the existence of order relations in the sets of functions 
available in intersect sections. 

Time is thus not a primary parameter, and the physical universe has no 
beginning: time is just related to ordered existence, not to existence itself. The 
topological space does not require any fundamental difference between 
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reversible and steady-state phenomena, nor between reversible and irreversible 
process. Rather relations simply apply to non-linearily distributed topologies, 
and from rough to finest topologies. 

Such fundamental notions as point, distance and similitude allow us to 
introduce relative scales in the empty-set lattice, i.e. the tessellattice; therefore 
space everywhere becomes quantized. Indeed, from mapping : DG N aQ of 
( ...)N N N× × ×  in Q we can identify a set of rational intervals. In this way, 
for n integers in each one of the 2-D spaces, n n× , the pair (1, )n  yields 
fraction 1/n  and the pair (1, 1)n −  yields ratio 1/( 1).n −  Their distance is then 
the smaller interval, i.e. difference between these two fractions gives the 
smaller interval proportional to 2/1 n , or more exactly, the interval 
1/( 1) 1/n n− −  1/( ( 1))n n= −  that denotes a special scale limit depending on 
the size of the considered space (this smaller interval formed by 2n  grains is 
constructed from ∅ ). In 3-D, we will have interval ))1(/(1 2 −nn . 

Predictable orders of size from x = 1 to x = 60 are clusters/universes 
whose objects range from 1 (the Planck scale, i.e. the size of an elementary cell 
of the tessellattice), to ~1010 elementary cells (roughly quark-like size), to 
about 1017 cells (atomic size), to 1021 cells (molecular size), to 1028 (human 
size), to 1040 cells (solar system size) up to 1056 cells (largest structures). The 
universe offers a quite different organization of matter at different scales. 

5.  Generation of matter 

Nowadays quantum and particle physics are considered as the most 
fundamental disciplines. They study the behavior of quantum systems, such as 
interaction between particles in the presence of this or that potential, 
transformations of particles to the others, etc. However, the fundamental 
notions with which quantum physics operates (mass, wave -ψ function, wave-
particle, de Broglie and Compton wavelengths, spin and others) lack 
comprehension of their nature and origin, inasmuch as these microscopic 
parameters are a priori treated as primordial. This makes it possible to raise 
questions concerning conceptual difficulties of quantum mechanics 
(Krasnoholovets, 2004). Are we able to develop deeper first principles and 
derive fundamental notions based on a sub-microscopic concept? The 
“strangeness” of quantum mechanical behavior of particles must be completely 
clarified, owing to an inner determinism establishing specific links in quantum 
systems, which are hidden under the crude orthodox quantum formalism. In 
quantum electrodynamics, the electric and magnetic charges are not derived 
from first principles, and remain inconceivable observable points with special 
properties. In contrast, the sub-microscopic approach allows a rigorous 
mathematical study and clear definition of this notion (Krasnoholovets, 2003). 

If we wish to provide insight into the structure of an abstract physical 
vacuum, we must rather assume that this substance is nothing, instead of 
complete emptiness. But nothing can be considered in terms of space, namely, 
topology, set theory and fractal geometry, which has just been demonstrated in 
the previous sections. 

One of our starting points is the idea that organization of matter at the 
microscopic (atomic) level should reproduce submicroscopic space ordering. 
This means that the lattice of a crystal should be the reflection of the 
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arrangement of real physical space. This space can be fully associated with the 
tessellattice of densely packed balls, or superparticles. And this is the 
degenerate space (one may associate it with an abstract physical vacuum). 
Superparticles constitute founding cells of the tessellattice and are stacked 
without any unfilled place between them, which refers to the nothingness 
singleton, discussed in Section 2. 

Degeneration of a cell is removed when the cell receives several 
deformations, such that its volume may be reduced, while the equivalent 
volume is redistributed among other cells (or in terms of conventional physics, 
the deformed superparticle becomes a massive particle), Figure 2. The mass m 
of this particle is the product of a constant C for dimensional analysis by ratio 
of the volume V of a superparticle to that of our reduced superparticle (which 
is now called the particle), 

 
 super part/m C V V= . (3) 

 By analogy with the crystal lattice in which a foreign particle deforms the 
environment, we recognize that a deformation sheath emerges in the 
tessellattice around a canonical particle; the size of this sheath is associated 
with the particle’s Compton wavelength (Figure 3). 
 
  

 
 

 

Figure 3. Particle as a local deformation of 
the tessellattice (the central cell) and the 
deformation coat that screens the particle 
from the degenerate tessellattice. 

 
Figure 2. Volumetric fractality of cells as elementary deformations of the tessellattice. 
These deformations can occur with and without change in the volume of cells. Local 
deformations producing a reduction of the volume of cells are associated with the local 
generation of mass. These deformations can migrate in the tessellattice from cell to cell 
(from Bounias and Krasnoholovets, 2002). 
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Having established the particle, we may try to construct its mechanics in 
tessellation space, which immediately means development of physical laws 
and physics in general. Since the space should be densely packed with balls, 
any motion of a chosen (deformed) ball should be expressed in terms of 
interaction with other balls of the space. This brings about a radically new 
approach to the behavior of matter. 

6. The submicroscopic mechanics 

Thus, the real space exists in the form of the tessellattice, i.e. tessellation 
lattice of primary balls (superparticles, or cells) that densely pack the universe. 
The submicroscopic mechanics of particles has been developed by the author 
in a series of works (see, e.g. Krasnoholovets, 2002a). A particle cannot move 
without rubbing against superparticles of the tessellattice, and hence a packet 
of lattice deformations goes forward accompanying the particle. Elementary 
excitations migrating from cell to cell in fact represent a resistance, i.e., inertia, 
of the space constructed as the tessellattice. These excitations, called inertons, 
are produced at collision-like phenomena: deformations (inertons) go from the 
particle to the surrounding space and then due to elastic properties of the 
tessellattice some come back to the particle. This motion can be described by 
the appropriate Lagrangian (simplified here) 

 2 2/ 2 / 2 /L mx m x Tµ χ µ χ= + −&& &  (4) 

where m, x and ,µ χ  are the mass and position of the particle and its inerton 

cloud, respectively; 1/T is the frequency of collisions between the particle and 
the cloud. 

The Euler-Lagrange equations indicate periodicity in the behavior of the 
particle. Consequently, the particle velocity oscillates between the initial value 
υ  and zero along each section λ  of the particle path. This spatial amplitude is 
determined as follows: Tλ υ= . The same occurs for the cloud of inertons: 

cTΛ = . These two amplitudes become connected by means of relationship 
/cλ υΛ = . 

Furthermore, solutions to the equations of motion show that motion of the 
particle in the tessellattice is characterized by two de Broglie relationships for 
the particle: νhE =  and /( )h mλ υ=  where 1/(2 ),Tν =  and these allow the 
derivation of the Schrödinger equation. Therefore, at this stage submicroscopic 
mechanics passes into conventional quantum mechanics. 

The amplitude of spatial oscillations of the particle λ  appears in quantum 
mechanics as the de Broglie wavelength. The amplitude of the particle’s cloud 
of inertons Λ  becomes implicitly apparent through the availability of the wave 

-ψ function. Therefore, the physical meaning of the -ψ function becomes 
completely clear: it describes the range of space around the particle perturbed 
by its inertons. 

The next step is that inertons transfer not only inertial, or quantum 
mechanical properties of particles, but also gravitational properties, because 
they transfer fragments of the deformation of space (i.e. mass) induced by the 
particle. Study (Krasnoholovets, 2002b) shows that the object’s dynamic 
inertons allow the derivation of Newton’s static gravitational law, as long as 
inertons spread as a standing spherical wave specified by the dependency 1/r. 
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7. Concluding remarks 

The mysteries of quantum mechanics are here explained in real space, and 
inertons have been experimentally detected in conditions predicted by the 
theory (see, e.g. Krasnoholovets, 2002a). The submicroscopic mechanics fully 
restores determinism. In addition, recently my colleagues and I have launched 
the project entitled “Inerton Astronomy,” in conjunction with which we have 
built a special laboratory facility able to measure inerton waves. We can now 
record inerton signals along the West-East line at ~20 Hz, which is associated 
with proper rotation of the globe. From September to December, 2004, we 
recorded a flow of inertons at frequencies from 18 to 22 kHz coming from the 
northern sky in a universal time interval from 3 p.m. to 5 p.m. 

The concept of the tessellattice of space replaces such uncertain notions 
as classical elastic aether and physical vacuum. This deeper concept makes it 
possible to uncover many inner details of the constitution and behavior of 
particles and physical fields, which have thus far eluded researchers. 
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