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Real physical space is derived from a mathematipates constructed as a
tessellation lattice of primary balls, or superjgdes. Mathematical

characteristics, such as distance, surface andmnelgenerate in the fractal
tessellation lattice the basic physical notions dsnaatrticle, the particle’s de
Broglie wavelength and so on) and the correspondlimglamental physical

laws. Submicroscopic mechanics developed in theelbastice easily results in
the conventional quantum mechanical formalism &irger atomic scale and
Newton’s gravitational law at a macroscopic scale.

1. Introduction

Although Poincaré (1905a) was the first to write tklativistic transformation
law for charge density and velocity of motion, Eeis's (1905) special
relativity article received wide recognition, peplsadue to his introduction of a
radically new abstract approach to fundamentalsctwthen culminated in his
famous theory of general relativity (Einstein, 1R1Bue to its predictions,
which were verified experimentally, abstract théios¢ concepts took root in
the minds of a majority of physicists. Einsteinjgpeoach resembled rather a
generalized description that descended to partEularough a series of
postulated axioms. His general relativity considersy matter and geometry,
constructed in empty space, coexist and influeaod ®ther, though matter is
not an intrinsic property of space.

Einstein’s thoughts regarding an aether were ezpre his well-known
lecture (Einstein, 1920). He noted that since speace endowed with physical
gualities, an aether must exist. Then he mentighat] according to general
relativity, space without an aether is unthinkafight would not propagate;
there would not any space-time intervals in the sptgl sense,etc).
Nevertheless, Einstein stressed that this aethghtmiot be thought of as
endowed with quality characteristic of a ponderaiedium, consisting of
parts that might be tracked through time. Howettes, basic issue remained:
Why could the aether not be associated with a mate$t This was never
clarified by Einstein completely.

The hypothesis of an aether as a material substesponsible for
electromagnetic wave propagation has been testedmagy researchers
(Miller, 1933; Essen, 1955; Azjukowski, 1993). Aweptical method of the
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first order was proposed and implemented by Gal2@92) for measurements
of the aether-drift velocity and kinematic viscgsiif aether. Galaev’s results
correlate well with the results of other researshgroted above.

Observability, reproducibility and repeatability adéther drift effects have
been conducted in various geographical conditigisgudifferent methods of
measurement and in various ranges of electromagmetves. Overall, this
research strongly supports the idea that the aetteesubsrate responsible for
propagation of electromagnetic waves. These stugttied light on the negative
results of aether wind measurements by MichelsahMaorley: Their tool had
too low a sensitivity.

Other researchers demonstrated direct interactibrmatter with a
subquantum medium. In particular, the influenceaafew “strange” physical
field on test subjects has been shown by Bauro@ZR®Benford (2002) and
Urutskoevet al. (2002). Similar effects are described by Ship@8{@), though
the changes in samples examined were associatbdiwitso-called “torsion
radiation” introduced by Shipov as a primary fi¢kdht allegedly dominated
over a vague physical vacuum long before its aveatiOne more
incomprehensible phenomenon is the Kozyrev efféozyrev and Nasonov,
1978) whereby a bolometer centrally located infdwal point of a telescope
records a signal from a star much earlier thanlitgte signal hits the focal
point.

Let us briefly examine Poincaré’s studies. His aese was also highly
abstract, especially his investigations in mathé&satnd mathematical
physics. Nevertheless, in physics applicationsiried to hold to natural laws
as closely as possible. In fact, Poincaré (190%M6)1 believed any new
success in science was further support of detesminin his works, he tried to
start from a few details, which should then diseltise problem as a whole.
Poincaré (1905b) strongly supported the idea aiether, as he considered the
motion of a particle to be accompanied by an agtkeeurbation. The idea of
perturbation of the aether by a moving object waslpminant among leading
mathematicians and physicists up to beginning @2 century.

Therefore, his idea deserves credit (if any kindaether in fact exists).
Poincaré treated particles as peculiar points enaéther, though he did not
develop further ideas on its construction nor pples of the motion of
material objects in it. Experimental facts were abtindant at that time, and
theoretical notions of condensed matter physicéchwvould help one to look
at a possible theory of aether in more detail, wkeking. Moreover,
mathematical methods of description of space wks@ia an embryonic state
at beginning of the 2Dcentury, despite the fact it was Poincaré who psef
and developed new concepts and methods of thetigatsn of space as such.
At that time, data were not so numerous as now, thigl did not allow
Poincaré to consolidate ideas on space and aethar unified generalized
concept of real space.

However, today when abundant data are availablenasetry to look at
the possibility of unifying mathematical and phydiedeas to incorporate an
aether into space in one unified object of compmehe study.
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2. The constitution of space

Many researchers are involved in the search foeary of everything (TOE).
However, do we yet have a “theory of something™®2 Phoblem was studied
by Bounias (2000) on the basis of pure mathematdalciples. He firmly
believed the ultimate theory might be some mathigagbrinciple.

Following Bounias (2000), and Bounias and Krasnohets (2002,
2003), we can explore the problem of the constitubf space in terms of
topology, set theory and fractal geometry. Evidgrdiccording to set theory,
only the empty set (denotétl) can represent nearly nothingHis a part oE,
then the remaining part &, which does not contaiR, is the complementary
of F in E, which is denotedC. (F) . The empty sefl is contained in any s&

i.e. Cc(E)={0,E}, thenCc(E) =0 . This result, together witC (J) = E,

is known as the first law of Morgan. This alloweduias to conclude the
complement of the empty set is the empty €&t(J) =0 . Following von

Neumann, Bounias considered an ordered {$e€){ 3},{ { .0 }}H and

so on. By examining the set, one can count its neesabl] =zero,
{03,{ 3 = one ancetc.This is the empty set as long as it consists gitgm
members and parts. On the other hand, it has the samber of members as
the set of natural integer$y ={0, 1, 2, ..., n}. Although it is proper that reality
is not reduced to enumeration, empty sets give toseathematical space,
which in turn brings about physical space. Somethingcan emerge from
emptiness.

The empty set is contained in itself, hence it ima-well-founded set, or
hyperset, or empty hyperset. Any parts of the eniptyerset are identical,
either a large par{(]) or the singleto{ [} ; the union of empty sets is also
thesameD OM@MO{M X B O {O{O{ I B} .0 =0.This
is the major characteristic of a fractal structuvBich means the self-similarity
at all scales (in physical terms, from the elemgnsab-atomic level to cosmic
sizes). One empty sét can be subdivided into to two others; two emptyg se
generate something(d0) O (O) that is larger than the initial element.
Consequently, the coefficient of similarity jgd[%, 1]. In other words,p
realizes fragmentation when it falls within theeintal ] %, 1 and union when
p with the interval]0, ] yields ]0, 1. The coefficient of similarity allows us
to estimate the fractal dimension of the empty g which owing to the
interval 10, 1] becomes a fuzzy dimension.

Time can be callediothing because it is a singleton that does not have
parts (otherwise it will be in contradiction to tdefinition of time as such).
The nothingness singletoffl)) is absolute unique. It is the lowest boundary of
everything existing; this is the infimum of existen
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Figure 1. Range of things, from non-existence to somethimgtg whose structure gives
rise to something non-empty and up to infinity ffr@ounias and Krasnoholovets, 2002).

4-D mathematical spaces have parts in common wiihspaces, which
yields 3-D closed structures. There are then pgartsommon with 2-D, 1-D
and zero dimension (points). General topology iattis the origin of time,
which should be treated as an assembly of sect®nsf open sets. Indeed,
fractality of space generates fuzzy dimensions (Bsiand Krasnoholovets,
2003a), and hence a common part of a pair of open\E, and W, with
different dimensionsmand n also accumulates points of the open space.
m> n, then those points, which belong ¥4, and would not belong to the
section of the given sets, cannot be included i[a object. Bounias and
Krasnoholovets (2002) exemplified this in the fallnog way: “You cannot put
a pot into a sheet without changing the shape ef2{D sheet into a 3-D
packet. Only a 2-D slice of the pot can be a p#éra sheet.” Therefore,
infinitely many slicesj.e. a new subset of sections with dimensionality fil@m
to 3, ensure the raw universe in its timeless form.

Thus a physical space is one that can be proviglezldsed intersections
(timeless Poincaré sections) of abstract matheralaggaces. What happens to
these section§ that all belong to an embedding 4-space? A sefigections

S. S.. S,. etc. resembles the successive images of a movie, alyd on

nothing does not move. Therefore, the differencalisfribution of objects
within two corresponding sections will mean a detble increment of time.
Hence time will emerge from order relations holdorgthese sections.

Two successive slices show a characteristic of emastical objects from
one to the next section. In other words, this imapping. The first section
produces some that then becomed (x) on the next one. The mapping

between nearest sections can be treated in theeWvark of an indicatrix
function 1(x) and Uryson’s theorem. By definitiod(x fdr anyx state yields

1(x) =0 if x has one property ant{x) =1 if x has an alternative property. A

combination of f(x) with 1(f (x)) makes a demonstration whose result

depends upon whether the variakleelongs to one part of the frame & or
belongs to the same part B,,. The complete function is a composition of

the variables with their distribution. That is, thumction has the structure of a
moment, called a “moment of junctioJ by Bounias (2000; Bounias and



The Tessellattice of Mother-Space 147

Krasnoholovets 2003b). The functidm) describes the smallest increment of
space. (One point is not at the same topologicsitipa for MJ to permit the
change.) Such fine change BfJ also defines an increment in time—the
minimal change. Since there is no thickness betweersectionsS and § .,

the moment of junctiorMJ rigorously describes a differential element of
space, which is also a differential element of timbis validates differential
geometry from the description of the Universe.

3. Measure, distance, metric and objects

The concept of measure usually involves such pdaatideatures as existence
of mappings and the indexation of collections dbsgis on natural integers.
Classically, a measure is a comparison of the nmedsebject with some unit
taken as a standard. The “unit used as a standatié part played by a gauge
(J). A measure involves respective mappings on spastich must be
provided with the rulesn, 00 and C. According to Bonaly and Bounias
(1996), in spaces of thR" type, tessellation by balls is involved, which iaga
requires a distance to be available for measurewfediameters of intervals.
Intervals can be replaced by topological balls, gredefore evaluation of their
diameter still needs an appropriate general defmibf a distance. More
comprehensive determinations of measure, distanetrjc and objects, which
involve topology, set theory and fractal geomeligye been made by Bounias
and Krasnoholovets (2003a).

In physics, a ruler is called a metric. As a ruleathematical spaces
including topological spaces have been treatedoagmdowed with a metric,
and properties of metric spaces have not beenatine ss thosef non-metric
spaces. However, in 1994 Bounias (s&g, Bonaly and Bounias, 1996) have
shown that a non-metric topological space doeserist! Indeed, union and
intersection allow the introduction of the symmetdifference between two
setsA; and A,

AA, A)= C O, (An A) @

O{A}
i.e. the complementary of the intersection of theses smt their union.
Symmetric difference satisfies the following prapes: A(A;, A;) =0 if

A=A, AA, A) =LA, A) and A(A;, A) is contained in union of
A(A, A;) and A(A;, A, ). This means it is a true distance and can also be
extended to the distance of three, four aetd. sets in one, namely,
A(A L AL A A L), Since the definition of a topology implies the
definition such a set distance, every topologipalce is endowed with this set

metric. The norm of the set metric iIHA|FA O, A) Therefore, all

topological spaces are metric spaces; metric spaces, and they are
measurable.

We now examine at the remaining pas, the intersection of the sets. If
they are of unequal dimensions, this intersectialt ke closed,i.e. the
intersection in a closed space is closét,; (A;, A;), which signifies the

availability of physical objects. As distancAsare the complementariness of
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objects, the system stands as a manifold of opencéysed subparts. This
procedure subdivides the Universe into two pahs:distances and the objects.

In general, we can imagine the universe as an irmeé@nop containing
N balls. Since measurement embraces such notiohsngth, surface and
volume, we may represemt—the loop distance of the universee(, the
perimeter that can be measured with a ruler)—wéttameters of théN balls.
Indeed, letm be the measure of the balls (length, surface, abarwe of
dimensiond depending on what kind of the characteristics veeiaterested
in). Inside a universe of dimensid we have N times m° approximately
equal to/®, so that

D ~ (0 dogm + logN )/log¢ . (2

Thus if we know component parts of the univeise,can describe sizes and
shapes of the topological balls, we will be ablerézonstruct the large
unknown structure.

4. Tessellation lattice of primary balls

Let us now examine what space-time is in the ambrqaoposed by Bounias
and Krasnoholovets (2002, 2003). We started from fttunding element.
Namely, it is generally recognized in mathematiest some set does exist. A
weaker form can be reduced to the existence oéthgty set. If one provides
the empty set(d) with the combination ruleg[], 00) and the property of
complementary(C), a magma can be defined: The magma is a union of
elements(1), which act as the initiator polygon, and compleragnt(C),
which acts as the rule of constructiom®. the magma is the generator of the
final structure. This allowed Bounias to formul#te following theorem: The
magmaO” ={0, G constructed with the empty hyperset and the axibm
availability is a fractal lattice. Writing0") denotes the magma, and reflects
the set of all self-mappings dfl . The space, constructed with the empty set
cells of the magmal” , is a Boolean lattice, and this latti&4[]) is provided
with a topology of discrete space. A lattice oktdkation balls has been called
a tessellattice and hence the magma of empty hyperset becomeactalf
tessellattice.

Introduction of the lattice of empty sets ensurke existence of a
physical-like space. In fact, the consequence atesp(W,), (W,), ... formed
as parts of the empty séfl shows that the intersections have non-equal
dimensions, which gives rise to spaces containiingp@r accumulating points
forming closed sets (Bounias and Krasnoholovet®3aQ If morphisms are
observed, then this enables the interpretation asion-like phenomenon,
when one compares the state of a section withtdie sf mapped section. A
space-time-like sequence of Poincaré sectionsrieralinear convolution of
morphisms. Our space-time then becomes one of Hihematically optimal
morphisms, and time is an emergent parameter indexe non-linear
topological structures guaranteed by discrete 3t is, the foundation of the
concept of time is the existence of order relationghe sets of functions
available in intersect sections.

Time is thus not a primary parameter, and the gaysiniverse has no
beginning: time is just related to ordered existemmt to existence itself. The
topological space does not require any fundameditierence between
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reversible and steady-state phenomena, nor betweeersible and irreversible
process. Rather relations simply apply to non-liiheaistributed topologies,
and from rough to finest topologies.

Such fundamental notions as point, distance anditside allow us to
introduce relative scales in the empty-set lattiee the tessellattice; therefore
space everywhere becomes quantized. Indeed, froppintaG :N° i Q of
(NxNx Nx..) in Qwe can identify a set of rational intervals. listlvay,
for n integers in each one of the 2-D spaces,n, the pair (1, n) yields
fraction1/n and the pair1, n—1) yields ratiol/(n —1). Their distance is then
the smaller intervalj.e. difference between these two fractions gives the
smaller interval proportional tol/n’*, or more exactly, the interval
1/(n-1)-1/n =1/(n(n—-1)) that denotes a special scale limit depending on
the size of the considered space (this smallervatdormed byn® grains is
constructed frontl ). In 3-D, we will have interval/(n’(n-1)) .

Predictable orders of size from=1 to x=60 are clusters/universes
whose objects range from 1 (the Planck séadethe size of an elementary cell
of the tessellattice), to ~Ibelementary cells (roughly quark-like size), to
about 167 cells (atomic size), to D cells (molecular size), to ¥b(human
size), to 1° cells (solar system size) up to’i@ells (largest structures). The
universe offers a quite different organization @ftrer at different scales.

5. Generation of matter

Nowadays quantum and particle physics are congldeas the most
fundamental disciplines. They study the behaviogudntum systems, such as
interaction between particles in the presence a thr that potential,
transformations of particles to the otheetc. However, the fundamental
notions with which quantum physics operates (masse (/- function, wave-
particle, de Broglie and Compton wavelengths, spimd others) lack
comprehension of their nature and origin, inasmashthese microscopic
parameters ara priori treated as primordial. This makes it possibledise
guestions concerning conceptual difficulties of muan mechanics
(Krasnoholovets, 2004). Are we able to develop dedjst principles and
derive fundamental notions based on a sub-micrascapncept? The
“strangeness” of quantum mechanical behavior digges must be completely
clarified, owing to an inner determinism establighspecific links in quantum
systems, which are hidden under the crude orthagmntum formalism. In
guantum electrodynamics, the electric and magrettarges are not derived
from first principles, and remain inconceivable @tvg&ble points with special
properties. In contrast, the sub-microscopic apgroallows a rigorous
mathematical study and clear definition of thisio{Krasnoholovets, 2003).

If we wish to provide insight into the structure & abstract physical
vacuum, we must rather assume that this substane®thing, instead of
complete emptiness. But nothing can be considerderins of space, namely,
topology, set theory and fractal geometry, which juast been demonstrated in
the previous sections.

One of our starting points is the idea that orgation of matter at the
microscopic (atomic) level should reproduce subascopic space ordering.
This means that the lattice of a crystal shouldthe reflection of the
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Figure 2. Volumetric fractality of cells as elementary defations of the tessellattice.
These deformations can occur with and without ckaimgthe volume of cells. Local
deformations producing a reduction of the volumecells are associated with the local
generation of mass. These deformations can mignatee tessellattice from cell to cell
(from Bounias and Krasnoholovets, 2002).

arrangement of real physical space. This spacéedully associated with the
tessellattice of densely packed balls, or supagbest And this is the
degenerate space (one may associate it with amaebgthysical vacuum).
Superparticles constitute founding cells of thesédattice and are stacked
without any unfilled place between them, which reféo the nothingness
singleton, discussed in Section 2.

Degeneration of a cell is removed when the celleirexss several
deformations, such that its volume may be redueed|e the equivalent
volume is redistributed among other cells (or i of conventional physics,
the deformed superparticle becomes a massive lpyrtiigure 2. The mags
of this particle is the product of a const&nfor dimensional analysis by ratio
of the volumeV of a superparticle to that of our reduced supdgdar(which
is now called the patrticle),

m=C \éuper/ Vpari' 3)

By analogy with the crystal lattice in which a é@n particle deforms the

environment, we recognize that a deformation sheathmerges in the

tessellattice around a canonical particle; the sizéhis sheath is associated
with the particle’s Compton wavelength (Figure 3).

Figure 3. Particle as a local deformation of
the tessellattice (the central cell) and the
deformation coat that screens the particle
from the degenerate tessellattice.
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Having established the particle, we may try to ¢was its mechanics in
tessellation space, which immediately means dewsdop of physical laws
and physics in general. Since the space shouldebhsety packed with balls,
any motion of a chosen (deformed) ball should bpressed in terms of
interaction with other balls of the space. Thisngs about a radically new
approach to the behavior of matter.

6. The submicroscopic mechanics

Thus, the real space exists in the form of theetttice, i.e. tessellation
lattice of primary balls (superpatrticles, or cetlsat densely pack the universe.
The submicroscopic mechanics of particles has beseloped by the author
in a series of works (see,g.Krasnoholovets, 2002a). A particle cannot move
without rubbing against superparticles of the tésitiee, and hence a packet
of lattice deformations goes forward accompanying particle. Elementary
excitations migrating from cell to cell in fact regent a resistancieg., inertia,

of the space constructed as the tessellattice.eTéestations, callethertons
areproduced at collision-like phenomena: deformatiénsrtons) go from the
particle to the surrounding space and then dueldastie properties of the
tessellattice some come back to the particle. Wotion can be described by
the appropriate Lagrangian (simplified here)

L=ms¢/2 + ux?12 - Jmu I T (4)
wherem, x and &, Y are the mass and position of the particle anthégon
cloud, respectively; T/is the frequency of collisions between the paetahd
the cloud.

The Euler-Lagrange equations indicate periodiaitghie behavior of the
particle. Consequently, the particle velocity datils between the initial value
v and zero along each sectidnof the particle path. This spatial amplitude is
determined as followsA =uT . The same occurs for the cloud of inertons:
A =cT. These two amplitudes become connected by meamslaifonship
AN=Aclu.

Furthermore, solutions to the equations of motimomsthat motion of the
particle in the tessellattice is characterizedvey tle Broglie relationships for
the particle:E =hv and A =h/(nv) wherev =1/(2T), and these allow the
derivation of the Schrodinger equation. Therefatehis stage submicroscopic
mechanics passes into conventional quantum mechanic

The amplitude of spatial oscillations of the padetid appears in quantum
mechanics as the de Broglie wavelength. The andgitf the particle’s cloud
of inertons/A becomes implicitly apparent through the availapiif the wave
- function. Therefore, the physical meaning of tiie function becomes
completely clear: it describes the range of spawoaral the particle perturbed
by its inertons.

The next step is that inertons transfer not onlgrtial, or quantum
mechanical properties of particles, but also gadigihal properties, because
they transfer fragments of the deformation of spaeemass) induced by the
particle. Study (Krasnoholovets, 2002b) shows ttiet object’s dynamic
inertons allow the derivation of Newton’s statiagtational law, as long as
inertons spread as a standing spherical wave gxkby the dependencyrl/
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7. Concluding remarks

The mysteries of quantum mechanics are here exulaim real space, and
inertons have been experimentally detected in ¢iomdi predicted by the
theory (seee.g.Krasnoholovets, 2002a). The submicroscopic meckaunily
restores determinism. In addition, recently my eadlues and | have launched
the project entitled “Inerton Astronomy,” in conption with which we have
built a special laboratory facility able to measimerton waves. We can now
record inerton signals along the West-East line2&t Hz, which is associated
with proper rotation of the globe. From SeptemhkeDecember, 2004, we
recorded a flow of inertons at frequencies fromtd 22 kHz coming from the
northern sky in a universal time interval from &pto 5 p.m.

The concept of the tessellattice of space replanek uncertain notions
as classical elastic aether and physical vacuuns. déeper concept makes it
possible to uncover many inner details of the ctuigin and behavior of
particles and physical fields, which have thussladed researchers.
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