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Abstract It is shown that the Newton’s law of universal 
gravitation can be derived from first submicroscopic prin-
ciples inherent in the very nature of real space that is con-
stituted as a tessel-lattice of primary topological balls. The 
submicroscopic concept determines the notion of mass in 
the tessel-lattice and introduces excitations of space, which 
appear at the motion of particles (mass particles are deter-
mined as local deformations of the tessel-lattice). These ex-
citations are associated with carriers of the field of inertia. In 
the universe the gravitation is induced by standing inerton 
waves of mass objects, which oscillate around the objects 
with the speed of light. An overlapping of these standing in-
erton waves generates an elastic interaction between masses 
bringing them to a formation of clusters in which masses 
are characterized by both the Newtonian and elastic interac-
tion. It is this elastic interaction that cancels the necessity of 
introduction of mystical dark matter. At the same time, in-
ertons, carriers of inert properties of objects, can be treated 
as an analogous of hypothetic weakly interacting massive 
particles (WIMP) or axions, which some astronomers try to 
associate with dark matter particles.

Keywords Dark matter · Clusters of galaxies ·
Gravitation · Space · Tessel-lattice · Inertons

1 Introduction

McGauph (2011) has recently reported results of testing the
baryonic Tully-Fisher relation (BTFR) for gas rich galax-
ies, i.e. for a class of galaxies where stars do not dominate
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the baryonic mass budget. At the testing both axes of the
BTFR have been measured independently of the available
theories. McGauph’s demonstrated that his data coincide ex-
actly with those predicted by Milgrom’s hypothesis (Mil-
grom 1983, 2009). Some more theoretical preference to the
Milgrom’s modified Newtonian dynamics (MOND) is given
in a review article (Sanders 2009).

The starting point (Milgrom 1983, 2009) was a depar-
ture from Newtonian dynamics. Namely, the Newton force
F = ma was substituted for a significantly less force F =
m · (a − !a), which assumed to be active at a scale of
small centripetal accelerations of stars in some galaxies.
The modified regime is switched in at a " a0 where a0 =
(1.21±0.24)×10−10 m s−2 is the value of the threshold ac-
celeration estimated by Begeman et al. (1991). It is a matter
of fact that at such small a the rotation curves of disc galax-
ies behave as flat: stars’ orbital velocities V ∼ const, al-
though in the classical case of Newton dynamics the curves
have to follow a Keplerian law, V ∼ 1/

√
r .

Milgrom’s approach allowed one to introduce a relation
between a total mass M of the galaxy studied and its rotation
velocity (Milgrom 1983; Begeman and Broeils 1991)

V 4 = GMa0 (1)

and it is this relationship that has recently been verified (Mc-
Gauph 2011).

Moreover, McGauph (2011) further noted that MOND
(i) predicted in advance that galaxies of both high and low
surface brightness would fall on the same BTFR, though this
contradicts to the expectation of purely Newtonian gravity;
(ii) prescribed the mass-to-light ratios that agreed the stellar
population synthesis models; (iii) provided the only success-
ful a priori prediction of the first-to-second peak amplitude
ratio of the acoustic peaks of the cosmic background radia-
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tion. McGauph then reasonably concludes: “It is rare for a
non-canonical theory to have so many predictive successes”.

Nevertheless, McGauph (2011) indicates also major
shortcomings of MOND when applying to describe rich
clusters of galaxies (Sanders 2003) and the bullet cluster
(Clowe et al. 2004): the discrepancy of the clusters mass is
a factor of two, which means that MOND suffers of some
kind of dark mass too (though in the case of the Lambda-
Cold Dark Matter model the discrepancy of mass reaches
99 per cent).

Thus, to account for all the experimental results, MOND
requires some dark matter particles. These dark matter parti-
cles should behave themselves as “standard cold dark” mat-
ter on large scales and at the same time have to interact with
conventional matter resulting in MOND phenomenology for
disc galaxies.

In the present paper those missing dark matter particles
are introduced starting from first submicroscopic principles.

2 Preliminaries

2.1 Mathematical background

Some researchers mention the incompleteness of general
relativity and the difficulties associated with its physical in-
terpretation. The others talk about conceptual difficulties of
quantum mechanics. And everyone understands that these
two theories are quite different and unification is possible
only with substantial changes in both concepts. Conciliation
is feasible only on a common physical base, which is be-
yond the formalism of both quantum mechanics and general
relativity. This would be rather a kind of the double solution
theory over which De Broglie (1987) was working since the
beginning of 1950-s.

So, what would be the starting point, a basis for a more
universal physical theory? The theory of everything tries
to describe the whole physical world starting from the first
principles of quantum theory. However, what about a theory
of something? It is this theory that is able to clarify the ma-
jor primary notions of physics, namely: space, mass, charge,
particle, field, etc.

The theory of something (Bounias and Krasnoholovets
2003a, 2003b, 2003c, 2004) starts as a pure mathematical
theory from set theory, topology and fractal geometry gener-
ating a common study of such fundamental notions, as mea-
sure, distance, space dimensions and the founding element
(the empty set ∅). The axiom of the existence of the empty
set, added with the axiom of availability, in turn provide ex-
istence to a lattice L(∅) of empty set, which constitutes a
discrete fractal space. The set of parts of ∅ contains parts
equipotent to sets of integers, of rational and of real num-
bers, and owns the power of continuum. These spaces pro-
vide collections of discrete manifolds whose interior is en-
dowed with the power of continuum. Any of intersections of

subspaces provide a (D < 4)-space in which closed mem-
bers get the status of both observable objects and perceiving
objects. This stands for observability, which is a condition
for a space to be in some sort observable, that is physical-
like.

Therefore, this mathematical lattice of empty set cells
to be able to account for a primary degenerate substrate
(Bounias and Krasnoholovets 2003a, 2004). Space-time is
represented by ordered sequences of topologically closed
Poincaré sections of this primary space. These mappings are
constrained to provide homeomorphic structures serving as
frames of reference in order to account for the successive po-
sitions of any objects present in the system. Discrete proper-
ties of the lattice, called a tessel-lattice, allow the prediction
of scales at which microscopic to cosmic structures should
occur.

Deformations of primary cells by exchange of empty set
cells allow a cell to be mapped into an image cell in the next
section as far as mapped cells remain homeomorphic. How-
ever, if a deformation involves a fractal transformation to ob-
jects, there occurs a change in the dimension of the cell and
the homeomorphism is not conserved. Then the fractal ker-
nel of such deformed cell of the tessel-lattice can stand for a
“particle” and the reduction of its volume (together with an
increase of its area) is compensated by morphic changes of
a finite number of surrounding cells.

It is obvious that in the tessel-lattice a moving particle-
like deformation has to interact with the surrounding cells
involving a fractal decomposition process: the particulate
cell exchanges its original deformation with the surround-
ing cells, which will result in the appearance of a kind of a
cloud of deformed cells enclosing the particulate cell.

2.2 The emergence of quantum physics in the tessel-lattice

A volumetric fractal deformation of a cell of the tessel-
lattice can be associated with the physical notion of mass,
m = CVdeg.cell/Vdeform.cell, where C is a dimension constant
and Vdeg.cell stands for the volume of an original degenerate
cell and Vdeform.cell for the volume of the deformed cell. In
physics a resistance to the motion is called inertia. That is
why excitations of the tessel-lattice produced by a moving
particulate cell were called inertons.

If we consider kinetics of the motion of such complex
object—a particle surrounded with a cloud of inertons,—
we derive (Krasnoholovets and Ivanovsky 1993; Krasno-
holovets 1997) relationships for a particle suggested by
Louis De Broglie in 1982

E = hν, λ= h/(mv). (2)

Since relationships (2) have been obtained for a particle
moving in the tessel-lattice, the sense of parameters in (2)
becomes very clear: E is the total energy of the particle, mv
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is its momentum, λ is the spatial period in which the parti-
cle emits inertons and then absorb them back, ν is the fre-
quency of collisions of the particle with its cloud of inertons.
Because of the periodicity, the moving particle periodically
emits and absorbs its inertons, it is characterized by an in-
crease in its action !S; since this is a free motion through
the degenerate tessel-lattice, this increment !S is associated
with the Planck constant h.

De Broglie’s relationships (2) allow one to obtain the
Schrödinger wave equation (De Broglie 1987). But the
relationships (2) obtained in our case signify that the
Schrödinger wave ψ -function gains a real physical sense:
ψ represents the particle’s field of inertia whose carriers are
inertons and they carry mass and fractal properties of the
particle (Krasnoholovets 2010a). The cloud of inertons oc-
cupies the section λ along the particle’s path and spreads
to a distance of % = λc/v in transversal directions, where
c is the velocity of light for inertons in the particle’s cloud
(though a free inerton possesses a large velocity, Krasno-
holovets and Tane 2006).

An inerton field complete rejects the action at-a-distance
from the realm of quantum physics and introduces determin-
ism at every stage of evolution of the system studied (Kras-
noholovets 2010a). This new submicroscopic concept could
properly resolve quite a number of difficulties available in
quantum mechanics. Moreover, the concept was success-
fully applied for the description of many experiments. Most
interesting applications, which are in line with the subject
of the present paper, associated with a variation in mass of
entities in condensed media (owing to the overlapping of
inerton clouds of entities) (Krasnoholovets 2010b) and at a
dense inerton field the gathering of about 1010 electrons in a
log-living cluster (due to the absorption of inertons knocked
out by a laser beam from a crystal) (Krasnoholovets et al.
2006).

The tessel-lattice is the source for an electric and mag-
netic charge, photon and electromagnetic field and these
make it possible to derive the Maxwell equations (Krasno-
holovets 2003).

2.3 Gravitation in the tessel-lattice

At last, the concept allows the derivation of the Newton’s
law of universal gravitation (Krasnoholovets 2008, 2010b),
which is behind the formalism of general relativity. In the
case of a canonical particle, the gravitation emerges when
the tessel-lattice responses to inertons emitted by the moving
particle, namely, the tessel-lattice elastically pushes them
back to the particle and the latter re-absorbs them. This
means the motion of a particle occurs with the periodical de-
cay of its mass: the mass is gradually transformed into a ten-
sion of the tessel-lattice. The appropriate whole Lagrangian

has the form (Krasnoholovets 2008)

L = −m0c
2
{

submicroscopic mechanics

+
(

T 2

2m2
0

ṁ2 + T 2

2%2 ξ̇
2 − T

m0
ṁ∇ξ

)}1/2

. (3)

Here, m0 is the rest mass of the particle, % is the ampli-
tude of the particle’s inerton cloud, T is the period of col-
lisions of the particle and its inerton cloud; m = m(r, t) is
the current mass of the {particle + inerton cloud}-system;
ξ = ξ(r, t) is the current value of the rugosity of the tessel-
lattice in the range covered by the system. Geometrically the
rugosity ξ depicts the state in which the tessel-lattice cells
covered by the inerton cloud are shifted a little bit from their
equilibrium positions, which induces a local tension in the
tessel-lattice; the tension of the particulate cell may be asso-
ciated with an increase in size.

The system studied features the radial symmetry; then
variables m and ξ are functions of only the distance r from
the particle and the proper time t of the {particle + inerton
cloud}-system. In this case we preserve only radial com-
ponents in the both variables, which enables us to use the
spherical coordinates. The Euler-Lagrange equations of mo-
tions for m and the radial component of ξ result in (Krasno-
holovets 2008)

∂2m

∂t2 −
(

c2

r

)
∂2(rm)

∂r2 = 0, (4)

∂2ξ

∂t2 −
(

%2

m0T

)
∂

∂r

(
∂m

∂t

)
= 0, (5)

where the Laplace operator is presented in the spherical co-
ordinates as !m = 1

r
∂2

∂r2 (rm).
The radial symmetry allows the solutions to (4) and (5)

in the form of standing spherical waves, which exhibit the
dependence 1/r ,

m(r, t) = C1
m0

r
cos

(
πr

2%

)∣∣∣∣ cos
(
πt

2T

)∣∣∣∣, (6)

ξ(r, t) = C2
ξ0

r
sin

(
πr

2%

)
· (−1)[

t
T ] ·

∣∣∣∣ sin
(
πt

2T

)∣∣∣∣. (7)

The dimensionality of integration constants C1,2 corre-
sponds to length and can be put here C1 = lPlanck ≈ 10−35 m
and C2 =%.

An object, which consists of many particles (a solid,
a planet, or a star), experiences local vibrations of its en-
tities (atoms, ions, particles), as is the case with entities in
the crystal lattice. Entities vibrate in the neighborhood of
their equilibrium positions and/or move to new positions.
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These movements produce inerton clouds around the appro-
priate particles. Inerton clouds overlap forming a total iner-
ton cloud of the object (Krasnoholovets 2008, 2010a). The
spectrum of inertons is similar to the spectrum of phonons
in a solid (a body of phonons is filled with inerton carri-
ers; Krasnoholovets 2010b). For instance, if we have a solid
sphere with a radius Rsph, which consists of Nsph atoms, the
spectrum of acoustic waves will include Nsph/2 wave har-
monics with wavelengths λn = 2bn where b is the lattice
constant and n = 1,2,3, . . . ,Nsph/2.

At the same time, overlapping inerton clouds, which ac-
company vibrating atoms, produce their own spectrum of
inerton wavelengths

%n = λnc/vsound. (8)

This means that the Lagrangian (3) and the solutions (6)
and (7) obtained for a moving particle are proper also for
a macroscopic object at rest. Indeed, an object with a mass
m is characterized by the inner motion of its entities, whose
vibrations induce oscillations of an inerton field both inside
and outside of the object.

For instance, for a small solid sphere with a size 1 cm3

and the quantity of atoms Nsph ∼ 1022 we get from rela-
tion (8) that the longest standing inerton wave can spread
up to a distance %∼ 1017 m ≈ 10.5 light years. Behind this
radius any information about the solid sphere is absent.

Longest standing inerton waves of a macroscopic body
with a radius R and a mass m induce the deformation poten-
tial (6) in the surrounding space, i.e. these waves contract
cells of the tessel-lattice as the rule (6) prescribes. In the re-
gion of space R ≤ r " % the time-averaged distribution of
the mass of the standing inerton wave becomes

m(r, t) = lPlanckm0/r. (9)

Multiplying both hand sides of expression (9) by a factor of
−G/lPlanck we obtain a conventional Newtonian potential

U = −Gm0/r (10)

that describes the gravitational attraction of a test mass to
the object with the mass m0.

This result shows that the gravitational mass of the object
is complete accumulated in its standing inerton wave.

This theory of the Newtonian potential formation has
further been developed in works of Krasnoholovets (2009,
2011). In particular, it has been argued the necessity of the
tangential inerton interaction between masses, which gives
rise to a correction to the Newton’s law of gravitation (Kras-
noholovets 2009)

U = −G
m0m1

r

(
1 + ṙ2

tan

c2

)
, (11)

where ṙtan is the tangential velocity of a test body with the
mass m1 i.e. the body’s orbital velocity. Corrected Newton’s
law of gravitation (11) was further used to study the anoma-
lous precession of the Mercury’s perihelion, the bending
of light and the red shift of spectral lines (Krasnoholovets
2009). The submicroscopic concept made it possible to de-
rive exactly the same equations for the descriptions of those
three phenomena, which were produced by general relativ-
ity. Moreover, the submicroscopic concept has enabled one
to clarify a nature of changes in space associated with the
so-called gravitational time delay effect (the Shapiro time
delay effect; Krasnoholovets 2011). It is important to note
that the velocity of inertons in standing inerton waves may
exceed the speed of light, because their velocity includes
also the velocity of the object that irradiates these standing

waves (i.e., vstand.inertons =
√

c2 + v2
object, see the expression

(11) and Krasnoholovets 2009).

3 Interacting stars

3.1 Statistical mechanical approach

Krasnoholovets and Lev (2003) developed a method of sta-
tistical physics for the description of systems of interacting
particles taking into account a spatial nonhomogeneous dis-
tribution of particles, i.e. cluster formation. In particular, we
considered gravitating masses with the Hubble expansion.

Identical gravitating masses, i.e. stars, were character-
ized by an effective attraction potential energy uattr.

12 =
Gm2/(r1 − r2) and the effective repulsion energy u

rep.
12 =

1
2mH 2

0 · (r1 − r2)
2. We used the fact that an additional ki-

netic energy E12 = 1
2m · (v1 − v2)

2 of masses is associated
with the Hubble expansion. The relative velocity v1 − v2 of
masses separated in space correlates with the relative dis-
tance between the masses, because v1 − v2 = H0 · (r1 − r2),
where H0 is the Hubble constant.

We obtained the following solution for a number of stars
gathered in a cluster (Krasnoholovets and Lev 2003)

ℵ ≈ 120π
33

Gρ

H 2
0

, (12)

where ρ is the density of stars. As seen from expression (12),
just value of ρ is critical for the formation of a cluster, i.e.
when ℵ * 1. Putting H0 = 1.6 × 1018 s−1, we may state
that the inequality ℵ * 1 holds when the density of stars
ρ * 10−25 kg m−3 ≈ M+/(11 kpc)3.

Now let us come back to the Newtonian gravitational po-
tential (10), which is formed by standing inerton waves of
an object with a mass m. In the case of the sun, the num-
ber of its particles is above 1050. Then at the worse condi-
tions for relation (8), λ1 ∼ 10−15 m and c/vsound ∼ 1, we
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get λN/2 ∼ 1035 m and may crude estimate a boundary to
which the sun’s inertons can spread: %N/2 ∼ 1035 m, which
exceeds the observed radius of the universe. This means that
we may neglect the rugosity/tension (7) of the tessel-lattice
at an examination of a system of stars, which are disposed
in the same galaxy.

However, we cannot disregard an overlapping of local
deformations of the tessel-lattice, induced by standing in-
erton waves of a system of stars. In fact, a “breathing” of a
star, i.e. radial oscillations of its inerton clouds, which oc-
cur with the speed of light c, results in mutual overlapping
of inerton clouds of stars. Therefore, these standing inerton
waves induce the Newton’s potential of gravitation (10) and,
in addition, owing to the mutual scattering of counterpropa-
gating waves of nearest stars they introduce the elasticity in
interstellar space. This means that the quasi-stationary grav-
itational law (11) should be supplemented by an additional
elastic energy created by the mutual overlapping of inerton
clouds of all stars of the system studied. Note in such a way
a unification of molecules takes place in gases, liquids and
solids (Krasnoholovets 2010b).

Thus, a correct expression for the energy of interacting
stars should include four terms: (i) the gravitational poten-
tial interaction (11) between two masses mi and mj ; (ii) the
gravitational interaction of a mass mi with the total mass
M of the system of stars; (iii) an elastic interaction between
masses mi and mj ; (iv) the interaction between masses mi

and mj associated with the Hubble expansion (see above).
Basing on the results (Krasnoholovets and Lev 2003),

we may assume that all stars in the system studied are dis-
tributed by nodes of a lattice (some nodes are filled and some
not). Then if a system of interacting particles possesses at-
traction and repulsion pair potentials, statistical mechanics
prescribes (Krasnoholovets and Lev 2003) that in such a sys-
tem all particles become distributed by K identical clusters.
The action for each cluster looks as follows

S ≈ (α − β) · ℵ2, (13)

where ℵ is the number of particles in the cluster and α and
β are functions associated with the particle interactions:

α = 1
℘kB-

∫
druelast.repul.(r),

(14)

β = 1
℘kB-

∫
druattract.(r),

where ℘ is the effective volume of a particle and the integra-
tion is running over the volume of the whole cluster; kB- is
the thermal energy of the environmental thermostat (kB is
the Boltzmann constant and - the absolute temperature).
Absolute values of the pair potential interactions are

uelast.repuls.(gx) = 1
2
mω2 · (gx)2 + 1

2
mH 2

0 · (gx)2, (15)

uattract.(gx) = GMm

R
+ Gm2

gx
, (16)

where m is the mass of a star; g is the lattice constant (a dis-
tance between neighbor stars in the model lattice); x is the
dimensionless distance defined through a relation r = gx; ω
is the radial frequency of oscillation of the mass m near its
equilibrium position; M is the mass of the whole system of
stars, which occupies space up to the effective radius R, and
hence in expression (16) the first term can be considered as
a middle-field potential energy.

3.2 3-D clusters

For a spherical cluster the integrals in expression (14) can be
rewritten via the number ℵ of particles in the cluster (Kras-
noholovets and Lev 2003)

1
℘

∫
dr = 1

(4π/3)g3 4π
∫ R

g
r2dr = R3 − g3

g3 = ℵ. (17)

Substituting expressions (15) and (16) into the integrals
(14) we get

α = 3
kB-

∫ ℵ1/3

1
dxx2uelast.repuls.(gx)

(18)

= 3
10kB-

mg2 · (ω2 + H 2
0 )ℵ5/3,

β = 3
kB-

∫ ℵ1/3

1
dxx2uattract.(gx)

(19)

= 3
kB-

(
GMm

3R
ℵ + Gm2

2g
ℵ2/3

)
.

Then the action (13) becomes

S = 1
kB-

{
3

10
m · (ω2 + H 2

0 )g2ℵ11/3

− GMm

R
ℵ3 − 3Gm2

2g
ℵ8/3

}
. (20)

Taking into account the fact that galaxies and clusters
consist at least of a few thousand stars and knowing typi-
cal values for M , m, R and g, we may conclude that in the
first approximation the last term in expression (20) can be
neglected. Besides, it is reasonable to assume that the Hub-
ble energy, which affects a star, is smaller than the elastic
energy that retaining the star in a cluster. Therefore, the con-
tribution on the side of H0 may be considered as negligible.
The simplified action (20) can be investigated for the ex-
tremum: ∂S/∂ℵ = 0. The solution to this equation is

ℵ =
(

30
11

GM

Rg2ω2

)3/2

. (21)
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3.3 2-D clusters

In the case of quasi-flat clusters the expression (17) changes
to

1
A

∫
dr = 1

πg2 2π
∫ R

g
dr = R2 − g2

g2 = ℵ, (22)

where A = πg2 is the area occupied by one particle in a
cluster. Then retaining highest order terms in (14) written
for the flat case, we obtain for the functions α and β:

α = 2
kB-

∫ ℵ1/2

1
dxxuelast.repuls.(gx) = 1

2
mω2g2

kB-
ℵ2, (23)

β = 2
kB-

∫ ℵ1/2

1
dxxuattract.(gx) = GMm

RkB-
. (24)

Having these functions, we construct the action (13) as fol-
lows

S = 1
kB-

{
1
2
mω2g2ℵ4 − GMm

R
ℵ3

}
. (25)

The extremum is achieved at the solution of the equation
∂S/∂ℵ = 0, which results in the solution

ℵ = 3
2

GM

Rω2g2 . (26)

3.4 1-D clusters

In the case of quasi-linear clusters formulas are maximally
simplified. Indeed, ℵ = R/g and the functions α and β (14)
become

α = 1
kB-

∫ ℵ

1
dxuelast.repuls.(gx) = 1

3
mω2g2

kB-
ℵ3, (27)

β = 1
kB-

∫ ℵ

1
dxuattract.(gx) = GMm

RkB-
ℵ. (28)

Having functions (27) and (28), we obtain the action (13) as
follows

S = 1
kB-

{
1
3
mω2g2ℵ5 − GMm

R
ℵ3

}
. (29)

The solution of the equation ∂S/∂ℵ = 0 results in

ℵ =
(

9
5

GM

Rω2g2

)1/2

. (30)

Let us analyze the obtained solutions (21), (26) and (30).

4 Discussion

The solutions, which exhibit the distribution of particles by
clusters with ℵ particles per cluster, can be applied for the
description of disc galaxies (expression (26)) and star clus-
ters (expression (21)). In fact, the phenomenon of cluster
formation is well known in condensed matter physics, which
occurs with the presence of an outside field. For example, in
the presence of a thermal gradient the so-called Rayleigh-
Bénard cells (identical cylindrical or hexagonal structures)
appear in a layer of a primary uniform viscous fluid, elec-
trons assemble in clusters (about 108 electrons per cluster)
on the surface of liquid helium and, at last, we (Krasno-
holovets et al. 2006) could generate a long-living clusters
of electrons in which about 1010 electrons were gathering in
one droplet where they were hold by an inerton field.

Arcs and arclets of stars have been observed and inten-
sively investigated in rich clusters of galaxies (Fort and Mel-
lier 1994). 1-D cluster solution (30) exactly satisfies an arc
of stars (Fig. 1). Indeed, ℵ * 1 is reached in a wide range
of parameters. For example, putting M ∼ 1013M+, R ∼
100 kpc, g ∼ 1 pc and ω ∼ 10−14 s−1, we get from (30):
ℵ ∼ 105 stars in an arc. Less values of M will give less value
of stars involved in an arc. It is interesting that in principle a
ring distribution of stars is also quite possible.

For a disc galaxy we may apply the 2-D cluster solution
(26), which means that all the stars of the disc galaxy are
distributed by plane clusters with the appropriate number of
stars. Let us estimate the value of ℵ. In particular, for a disc
gas galaxy we may choose some typical values of the mass,
the radius and the distance between stars in the galaxy: M =
108M+ (McGauph 2011), R = 10 kpc, g = 1 pc. So, we
have only one fit parameter, the frequency ω of oscillations
of a star near its equilibrium position in the cluster. This
parameter can be estimated from a relation that restrains a
star in the cluster. Figure 2 depicts: star 1 experiences the
centripetal acceleration a to the center O of the galaxy; at
the same time neighbor stars strongly keep it by means of the
elastic energy 1

2mω2r2 (Fig. 2). This means that the equality
of two accelerations is hold:

GM/R2 −ω2g = 0. (31)

From (31) we get

ω =
(

GM

R2g

)

≈
{

(6.67 × 10−11) × (2 × 1040)

(3.09 × 1020)2 × (3.13 × 1016)

}1/2

, 2.1 × 10−14 [s−1]. (32)

Having known all the parameters, we may estimate the
number of stars in a cluster (26): ℵ ≈ 1.5 × 104.
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Fig. 1 Arc formed by stars in
the neighbor of the centroid of a
galaxy, which is a typical
quasi-1-D cluster

Fig. 2 Stars in a disc galaxy. The acceleration a, which star 1 expe-
riences to the center O of the galaxy, competes with accelerations on
the side of surrounding stars 2, 3, 4, etc., which restrain star 1 of the
motion to the point O

In this plane cluster each star is involved in three kinds of
interactions whose energies are

GMm/R ≈ 8.63 × 1041 J,

Gm2/g ≈ 8.52 × 1037 J, (33)

1
2
mω2g2 ≈ 4.32 × 1036 J.

Let us now evaluate the acceleration that each star expe-
riences in the plane cluster:

a = GM/R2 ≈ 1.4 × 10−11 m s−2. (34)

This value of the acceleration satisfies the conditions
prescribed by Milgrom (1983, 2009): a " a0 , 1.21 ×
10−10 m s−2. Thus we do not need to assume an incom-
prehensible modernization of Newton’s law, i.e. the sub-
stitution of the force F = ma by a significantly less force
F = m · (a −!a) at a " a0. Stars are distributed by clusters
and each star is strongly bounded with the other ℵ − 1 clus-
ter’s stars. This bounding compensates the centripetal accel-
eration a, which directs stars to the center of the gravitating
potential of the total mass M of the galaxy. Expression (31)
demonstrates this balance of two competing forces. That is
why a Keplerian law, V ∼ √

r , is substituted for the constant
orbital velocity (1).

Let us discuss now the 3-D cluster solution (21). The ob-
served cluster (the interacting cluster 1E 0657-558, Clowe
et al. 2004) has the total mass M ∼ 1014M+, the radius

R ≈ 250 kpc and the central mass density ρ0 = 3.85 ×
6M+ kpc−3. Putting for the mass of a star m = M+, we ob-
tain the mean distance between stars: g = (M+/ρ0)

1/3 =
4.25 × 1016 m. Then the stability of the cluster in respect to
its gravitational collapse is determined by the relationship
(31): the gravitational attraction of stars to the centroid is re-
tained by the elasticity of inerton waves in the cluster. The
frequency of oscillating stars at their equilibrium positions
owing to the overlapping of their inerton waves is

ω =
(

GM

R2g

)

≈
{

(6.67 × 10−11) × (1014 × 2 × 1032)

(7.71 × 1021)2 × (4.25 × 1016)

}1/2

, 3.82 × 10−13 [s−1]. (35)

The number of stars in such cluster, as it follows from
expression (21), ℵ = 2.39 × 109.

In this 3-D spherical cluster each star participates in three
kinds of interactions whose energies are

GMm/R ≈ 3.46 × 1046J,

Gm2/g ≈ 6.27 × 1037J, (36)

1
2
mω2g2 ≈ 2.64 × 1039J.

The acceleration to the centroid, which each star experi-
ences in the spherical cluster, is

a = GM/R2 ≈ 2.24 × 10−8 m s−2. (37)

The acceleration (37) is opposite to the inequality a " a0
needed for the use of MOND (Milgrom 1983). Besides, the
acceleration (37) is not compensated by the acceleration
caused by the elastic interaction in the cluster of ℵ stars:
ω2g ≈ 6.2 × 10−9 m s−2. These are the reasons why calcu-
lations (Clowe et al. 2004) of the shear profile γ (θ) caused
by a point mass, which included a correction based on the
MOND approach, showed a discrepancy between the avail-
able mass and the too intensive X-rays. Clowe et al. (2004)
note that the dark matter in the cluster exceeds at least twice
the baryonic mass component in a MOND regime. The same
emphasizes McGauph (2011).

However, the origin of so-called dark matter is nothing
but the same stars, which are involved in the mutual inter-
action through their inerton waves. This means that data
obtained from the observation of stars must be considered
taking into account an inerton component bounding stars.
An important role may play parameters in expressions (33)
and (36).

Basic concepts of gravitational lensing (Bliokh and Mi-
nakov 1989; Schneider et al. 1992; Mortlock and Turner
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2001) should also be modified—perhaps a point mass ap-
proach with a correction based on MOND or the other model
will require a substitution by an approach resting on the in-
volvement of elastically interacting masses. In particular, it
seems the deflection angle ϕ = 4Gm/(c2r) of a point mass
m, which includes the absolute value of the gravitational po-
tential Gm/r , can be modified as follows

ϕ̃ = 4
c2

(
Gm

r
+ 1

2
ω2r2

)
; (38)

this is evident from the pair interactions of stars (15) and
(16). The second term in expression (38) tends to align the
space deformed by the first term. This has to be typically for
2-D clusters (i.e. clusters in disc galaxies), which is apparent
from expressions (33). In the case of 3-D clusters (rich clus-
ters in galaxies) the second term may even prevail the first
one, see expressions (36), namely, the second term prolongs
the deflection angle ϕ to large distances at which the first
Newton’s term becomes already negligible.

The deflection angle (38) can be presented through a ratio
of accelerations

ϕ̃ = 4Gm

c2r

(
1 + a

2agrav.

)
(39)

where a = ω2r and agrav. = Gm/r2, which brings the ap-
proach closer to the MOND hypothesis. In a general way,
one has to take into account a sum of distributed point
masses and the possible presence of an outside potential
−GM/R.

Massey et al. (2007) showed that dark matter does in-
teract via gravity, which is most effectively probed through
gravitational lensing. The correction to the deflection angle
introduced in expression (38) discloses the reason for such
behavior of dark matter.

Maps of the large-scale distribution of dark matter, a net-
work of filaments and their intersection revealed by Massey
et al. (2007) allow a reasonable interpretation in the frame-
work of the present theory: standing inerton waves of large
gravitating masses indeed must interfere quite similar to
waves on the water surface. An evolution of such interfer-
ence pattern tends to a peculiar gravitational background, or
scaffold by Massey et al. (2007), into which gas can accu-
mulate, and stars can be built.

5 Concluding remarks

In the present work we have shown that the submicroscopic
concept exhibits the gravitation as a dynamic phenomenon—
no motion, no gravity,—and allows the derivation of the
Newton’s law of universal gravitation (10) starting from first
submicroscopic principles of the constitution of real space

(Krasnoholovets 2008). Submicroscopic mechanics further
introduces the correction (11) to this law. This correction
makes it possible to derive exactly the same equations for
the perihelion precession of Mercury, the light deflection by
Sun and the gravitational redshift of light (Krasnoholovets
2009), which were derived by general relativity. Besides,
the submicroscopic concept uncovers inner reasons for the
Shapiro time delay (namely, the concept shows what exactly
is hidden behind the fourth component of the Schwarzschild
metric; Krasnoholovets 2011).

The submicroscopic concept introduces the tessel-lattice
of mother-space as a source and generator of matter and
physics laws. The concept is fully deterministic, removes
an action at-a-distance and introduces a short-range action,
which is provided by photons in the area of electromagnetic
phenomena and inertons in the area of gravitation. The con-
cept complete rejects dark things from the space and inputs
an additional elastic interaction between gravitating objects
caused by overlapping of object’s inerton waves (the notion
of dark energy can be reduced to structural peculiarities of
the tessel-lattice at the universe scale, which requires a sep-
arate consideration).

Although Zwicky (1933) is treated as the “father” of dark
matter concept, the physical solution to this problem was
demonstrated by Poincaré (1905) even three decades before:
describing the motion of an electron in the ether Poincaré
noted that the electron was surrounded by excitations of the
ether. Those excitations are interpreted as inertons of the
submicroscopic concept described in the present paper.

The submicroscopic concept allows us to launch a new
project in astronomy, namely, the Inerton Astronomy in the
nearest future.
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