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Abstract: We describe a sub microscopic mechanism that is responsible for the 
appearance of crop circles on the surface of the Earth. It is shown that the inner reason 
for the mechanism is associated with intra-terrestrial processes occurring in the outer 
core and the mantle of the terrestrial globe. We assume that magnetostriction phenomena 
should take place at the boundary between the liquid and the solid nickel-iron layers of 
the terrestrial globe. Our previous studies showed that at the magnetostriction a flow of 
inertons takes out of the striction material (inertons are carriers of the field of inertia, 
they represent a substructure of the matter waves, or the particle's wave ψ-function; they 
transfer mass properties of elementary particles and are able to influence massive objects 
changing their inner state and behaviour). At the macroscopic striction in the interior of 
the Earth, pulses of inerton fields are irradiated, and through non-homogeneous channels 
of the globe's mantle and crust they reach the surface of the Earth. Due to the interaction 
with walls of these channels, fronts of inerton flows come to the surface as fringe images. 
These inerton flows affect local plants and bend them, which results in the formation of 
the so-called crop circles. It is argued that the appearance of crop circles under the 
radiation of inertons has something in common with the mechanism of formation of 
images in a kaleidoscope, which happens under the illumination of photons.   
Keywords: Crop circles, Inertons, Mantle and Crustle channels, Magnetostriction of 
rocks.  
 
 
1    Introduction 
Crop circles attract attention of many researchers. Studies (see, e.g. Refs. 1-3) 
show that in these circles stalks are bent up to ninety degrees without being 
broken and something softened the plant tissue at the moment of 
flattening. Something stretches stalks from the inside; sometimes this effect is 
so powerful that the node looks as exploded from the inside out. In many places 
crop formation is accompanied with a high degree of magnetic susceptibility, 
which is caused by adherent coatings of stalks with the commingled iron oxides, 
hematite (Fe203) and magnetite (Fe304) fused into a heterogeneous mass [2].  
Researchers [2-4] hypothesized that crop formations involve organised ion 
plasma vortices, which deliver lower atmosphere energy components of 
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sufficient magnitude to produce bending of stalks, the formation of expulsion 
cavities in plant stems and significant changes in seedling development.  
It should be noted that an idea of the origin of crop circles associated with the 
atmosphere energy and/or UFO is generally accepted.  
On the other hand, researchers who study geophysical processes and the 
earthquakes note about possible regional semi-global magnetic fields that might 
be generated by vortex-like cells of thermal-magmatic energy, rising and falling 
in the earth's mantle [5]. Another important factor is magnetostriction of the 
crust – the alteration of the direction of magnetization of rocks by directed stress 
[6,7]. 
Moreover, recent study [8] has suggested a possible mechanism of earthquake 
triggering due to magnetostriction of rocks in the crust. The phenomenon of 
magnetostriction in geophysics is stipulated by mechanical deformations of 
magnetic minerals accompanied by changes of their remanent or induced 
magnetization. These deformations are specified by magnetostriction constants, 
which are proportional coefficients between magnetization changes and 
mechanical deformations. A real value of the magnetostriction constant of the 
crust is estimated as about 10-5 ppm/nT, which is a little larger than for pure 
iron. Yamazaki’s calculation [8] shows that effects connected to the 
magnetostriction of rocks in the crust can produce forces nearly 100 Pa/year and 
even these comparatively small stress changes can trigger earthquakes.  
Of course, weaker deformations associated with magnetostriction of rocks also 
take place. These are the magnetostriction deformations that we put in the 
foundation of the present study of field circles. 
 
 
2    Preliminaries 
Our theoretical and experimental studies have shown that the phenomenon of 
magnetostriction is accompanied with the emission of inerton fields from the 
magnetostrictive material studied. What is the inerton field?  
Bounias and one of the authors [9-12] proposed a detailed mathematical theory 
of the constitution of the real physical space. In line with this theory, real space 
is constrained to be a mathematical lattice of closely packed topological balls 

with approximately the Planck size,   

€ 

G /c 3 ≈10-35 m. It was proven that such 
a lattice is a fractal lattice and that it also manifests tessellation properties. It has 
been called a tessel-lattice. In the tessel-lattice volumetric fractalities of cells are 
associated with the physical concept of mass. A particle represents a 
volumetrically deformed cell of the tessel-lattice. The motion of such a particle 
generates elementary excitations of the tessel-lattice around the particle. These 
excitations, which move as a cloud around the particle, represent the particle’s 
force of inertia. That is why they were called inertons [13,14]. The 
corresponding submicroscopic mechanics developed in the real space can easily 
be connected to conventional orthodox quantum mechanics constructed in an 
abstract phase space. Submicroscopic mechanics associates the particle’s cloud 
of inertons with the quantum mechanical wave 

€ 

ψ -function of this particle. Thus, 
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the developing concept turns back a physical sense to the wave 

€ 

ψ-function: this 
function represents the field of inertia of the particle under consideration. 
Carriers of the field of inertia are inertons. A free inerton, which is released 
from the particle’s cloud of inertons, possesses a velocity that exceeds the 
velocity of light  [15].  
In condensed media entities vibrating at the equilibrium positions periodically 
irradiate and absorb their clouds of inertons back [16]; owing to such a 
behaviour the mass of entities varies. This means that under special conditions 
the matter may irradiate a portion of its inertons. Lost inertons then can be 
absorbed by the other system, which has to result in changes of physical 
properties of the system.  
One of such experiments was carried out in work [17]. Continuous-wave laser 
illumination of ferroelectric crystal of LiNbO3 resulted in the production of a 
long-living stable electron droplet with a size of about 100 µm, which freely 
moved with a velocity of about 0.5 cm/s in the air near the surface of the crystal 
experiencing the Earth's gravitational field. The role of the restraining force of 
electrons in the droplet was attributed to the inerton field, a substructure of the 
particles’ matter waves, which was expelled from the surface of crystal of 
LiNbO3 together with photoelectrons by a laser beam. Properties of electrons 
after absorption of inertons changed very remarkably – they became heavy 
electrons whose mass at least million of times exceeded the rest mass of free 
electrons. Only those heavy electrons could elastically withstand their Coulomb 
repulsion associated with the electrical charge, which, of course, is impossible 
in the case of free electrons. 
We have shown [16] that in the chemical industry inerton fields are able to play 
the role of a field catalyst or, in other words, inerton fields can serve to control 
the speed of chemical reactions. In the reactive chamber we generated inerton 
fields by using magnetostriction agents: owing to the striction the agents non-
adiabatically contract, which is culminated in the irradiation of sub matter, i.e. 
inertons, from the agents. Then under the inerton radiation, the formation of a 
new chemical occurred in several seconds, though usually these chemical 
reactions last hours.  
Therefore, these results allow us to involve inerton fields, which originate from 
the ground, in a study of the formation of crop circles. 
The thickness of the crust is about 20 km. The mantle extends to a depth above 
3000 km. The mantle is made of a thick solid rocky substance. Due to 
dynamical processes in the interior of the Earth, magnetostrictive rocks contract 
with a coefficient of about 10-5 [8], which is a trigger mechanism for the 
appearance of a flow of inerton radiation. This flow of inertons shoots up from a 
depth by coming through the mantle and crust channel. Such channels are usual 
terrestrial materials with some non-homogenous inclusions down to tens or 
hundreds of kilometers from the surface of the terrestrial globe (compare with 
bio-energy channels in our body: the crude morphological structure is the same, 
but the fine morphological structure is different, which allows these bio-energy 
channels to display a higher conductivity). 
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A mantle-crust channel can be modeled as a cylindrical tube, which has a cross-
section area equal to A, along which a flow of inertons travels out from the 
interior of the globe. The inner surface of the channel has to reflect inerton 
radiation, at least partly, so that the flow of inertons will continue to follow 
along the channel to its output, i.e. the surface of the Earth. 
 
3 Elastic rod bending model 
 
Let us evaluate conditions under which the stalks of herbaceous plants will bend 
affected by mantle insertions.  
A stalk of a plant can be modeled for the first approximation by an elastic rod 
(Fig. 1). We suppose that it is deformed by an external force distributed 
uniformly over the rod length. This external force is a force caused by a flow of 
inertons going from the ground due to a weak collision of the mantle and crust 
rocks as described above. The rod profile in the projections to the horizontal and 
vertical axes is described as follows [18]. 

Fig. 1. Elastic rod model. 
 
I.  Vertical force  (Fig. 1a) 

 

€ 

x =
2IE
fy

1− cosϑ l − cosϑ − cosϑ l( ) ,   

€ 

y =
IE
2 fy

cosϑ dϑ
cosϑ − cosϑ l0

ϑ

∫ .    (1) 

                                    
Here  is the rod’s moment of inertia,  is the rod’s radius, and  is 
the Young’s modulus of the rod’s material. The length of the rod is explicitly 
given as 

                          

€ 

l =
IE
2 fy

dϑ
cosϑ − cosϑ l0

ϑ l

∫ .                                                  (2) 

At the maximum bending we have , so that 

                           

€ 

l =
IE
2 fy

dϑ
cosϑ0

π / 2

∫ =
IE
fy
K (1/2) ,                                      (3) 
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where  is the complete elliptic integral of the first kind. Hence, 
we come to an expression for the force required to bend the rod by a  angle: 

                                 

€ 

fy =
IE
l 2
K 2 (1/2) ≈ 3.44 IE

l 2
.                                            (4) 

II. Horizontal force  (Fig. 1b) 
 

   ,               (5) 

 
The length of the rod is explicitly given as  

                                    

€ 

l =
IE
2 fx

dϑ
sinϑ l − sinϑ0

ϑ l

∫ .                                          (6) 

In this case the maximum bending angle should be smaller than  (no such a 
force exists that can bend the rod by this angle). So, we select the maximum 
bending angle at  and write the corresponding relationship between 
the rod’s length and the acting force: 

                                      

€ 

l ≈ IE
2 fx

2.61   or  

€ 

fx ≈ 3.41
IE
l 2

,                                (7) 

which is nearly the same as in the previous case (4). 
Now let us evaluate the value of the breaking force

€ 

fbreak = fx ≅ fy . We have to 
substitute numerical values  m,  m for the rod and the value 
of elasticity (Young’s) modulus  to expressions (4) or (7). The value of  has 
been measured for many different grasses, see, e.g., Refs. 19-23. According to 
these data,  varies approximately from (0.8 to about  kg/(m⋅s2). For 
instance, in the case of wheat we can take  kg/(m⋅s2), which gives for 
the horizontal breaking force (7) 

                                     

€ 

fbreak = fx ≈ 3.41
IEYoung
l 2

≈ 0.163  N.                             (8) 

Besides, the authors [19-23] emphasize that for grassy stalks in addition to the 
elasticity modulus one has to take into account the bending stress, the yield 
strength (tensile strength) and the shearing stress. These parameters range from 

 to about  kg/(m⋅s2) and, hence, significantly decrease the real 
value of , which is capable to bend stalks. For example, putting for  the 
value of the maximal tensile stress  kg/(m⋅s2) we obtain for the bending 
non-breaking force  

                                    

€ 

fbend = fx ≈ 3.41
IE tens

l 2
≈ 0.0027  N.                              (9) 

The gravity force acting on the rod is 
                                   

€ 

fgrav = mg = ρVg = π ρR2l g ≈ 0.033 N.                       (10) 
where  is the rod’s material density about  kg/m3,  and  are its 
mass and volume, and  m/s2 is the acceleration due to gravity. 
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Thus we may conclude that any extraneous force F applied to a grassy stalk will 
be able to fold the stalk to the ground if the value of the force satisfies 
inequalities 
                                    

€ 

fbend ≤ F ≤ fbreak                                                            (11) 
 
4 Motion of the rotating central field 
 
The inner surface of a mantle-crust channel can be described by a retaining 
potential , which is holding a flow of inertons spreading along the channel 
from an underground source. Let  be the mass of an effective batch of 
terrestrial inertons from this source, which interact with a grassy stalk. The 
planar motion of such a batch of inertons in the central field is described by the 
Lagrangian 

                                     

€ 

L =
µ
2

˙ r 2 + r 2 ˙ ϕ 2( ) −U (r, ˙ ϕ )                                        (12) 

which is here written in polar coordinates 

€ 

r  and 

€ 

ϕ ; dot standing for the 
derivative with respect to time. To model a spreading inerton field, the potential 
should include a dependence on the angular velocity, 

€ 

U (r, ˙ ϕ ) , which means 
that we involve the proper rotation of the Earth relative to the flow of inertons. 
For instance, the potential can be chosen in the form of the sum of two 
potentials:  

                                       

€ 

U (r, ˙ ϕ ) =
α
2
r 2 +

β
2
r 2 ˙ ϕ .                                         (13) 

In the right hand side of expression (12) the first term is a typical central-force 
harmonic potential, which describes an elastic behaviour of the batch of inertons 
in the channel and the surrounding space; the second term includes a 
dependence on the azimuthal velocity, which means that it depicts the rotation-
field potential. The introduction of this potential allows us to simulate more 
correctly the reflection of inertons from the walls of the mantle channel, which 
of course only conditionally can be considered round in cross-section. 
The equations of motion are then written as  

                               

€ 

d
dt

∂L
∂ ˙ q i

−
∂L
∂qi

= 0 ,   

€ 

i = 1, 2, q1 ≡ ρ, q2 ≡ϕ                 (14) 

or in the explicit form  

                                

€ 

˙ ̇ r − r ˙ ϕ 2 +
α
µ

r +
β
µ

r ˙ ϕ = 0,                                                (15) 

                                

€ 

r ˙ ̇ ϕ + 2 ˙ r ⋅ ˙ ϕ −
β

2µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 .                                                    (16)                                       

These equations can be integrated explicitly or solved numerically at the given 
initial conditions 

€ 

r(0) , 

€ 

˙ r (0) , 

€ 

ϕ (0) , 

€ 

˙ ϕ (0) , and the trajectory of motion can be 
plotted in rectangular coordinates 

€ 

{r cosϕ , r sinϕ} . The second equation 
represents the conservation of the angular momentum M: 
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€ 

d
dt

µ r 2 ⋅ ˙ ϕ −
β

2µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0   or   

  

€ 

M = µ r 2 ⋅ ˙ ϕ - β
2µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = const .        (17) 

Figures 2 and 5 show two possible trajectories at particular values of the 
parameters. The radius of the inner circle is governed by the parameter 

€ 

β µ . 
 
 
 
 
 
 
 
 
 

Fig. 2. Trajectories of the motion of inertons in the rotating central field. 
Parameters for the left figure:

€ 

α µ = 1 s–2, 

€ 

β µ = 0.5  s–1; 

€ 

r(0) = 10  m, 

€ 

˙ r (0) = 0, 

€ 

ϕ (0) = 0 , 

€ 

˙ ϕ (0) = 0.01 s–1. Parameters of the right figure:  s–2, 

€ 

β µ = 0.1  s–1; 

€ 

r(0) = 10  m, 

€ 

˙ r (0) = 0, 

€ 

ϕ (0) = 0 , 

€ 

˙ ϕ (0) = 0.01 s–1. 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Velocity   

€ 

|  ˙ r | = ˙ r 2 + r 2 ˙ ϕ 2  of the batch of inertons versus time for the 
case of the trajectory shown in Fig. 2 (left). The max. velocity is  

€ 

υmax = 10  m/s. 
 
 
 
 
 
 
 
 
 
 
 

Fig, 4.  Acceleration   

€ 

|  ˙ ̇ r | = (˙ ̇ r − r ˙ ϕ 2)2 + (2 ˙ r ˙ ϕ + r ˙ ̇ ϕ )2 of the batch of inertons 
versus time for the case of the trajectory shown in Fig. 2 (left). The maximal 

acceleration is 

€ 

amax ≈ 10  m/s2. 
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Fig. 5. Trajectory of the motion of inertons in the rotating central field.  
Parameters for the right figure: 

€ 

α µ = 1 s–2, 

€ 

β µ = 0.5  s–1; 

€ 

r(0) = 10  m, 

€ 

˙ r (0) = 0, 

€ 

ϕ (0) = 0, 

€ 

˙ ϕ (0) = 1  s-1. Parameters for the left figure: 

€ 

α µ = 1 s–2, 

€ 

β µ = 2  s–1; 

€ 

r(0) = 10  m, 

€ 

˙ r (0) = 0 , 

€ 

ϕ (0) = 0, 

€ 

˙ ϕ (0) = 1 s–1. 
   
 
 
 
 
 
 
 
 
 
 

Fig. 6. Velocity   

€ 

|  ˙ r | = ˙ r 2 + r 2 ˙ ϕ 2 of the batch of inertons versus time for the 
case of the trajectory shown in Fig. 5 (left). The max. velocity is 

€ 

υmax ≈ 12 m/s. 
 
 

 

 
 
 
 
 
 
 
 

Fig. 7. Acceleration   

€ 

|  ˙ ̇ r | = (˙ ̇ r − r ˙ ϕ 2)2 + (2 ˙ r ˙ ϕ + r ˙ ̇ ϕ )2  of the batch of inertons 
versus time for the case of the trajectory shown in Fig. 5 (left). The maximal 

acceleration is  m/s2. 
 
In the case of the Newton-type potential, expression (13) changes to  
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€ 

U (r, ˙ ϕ ) = −
γ
r

+
β
2
r 2 ˙ ϕ .                                              (18) 

Then the equations of motion for the Lagrangian (14) become  

                                    

€ 

˙ ̇ r − r ˙ ϕ 2 +
γ

µ r 2 +
β
µ

r ˙ ϕ = 0 ,                                          (19) 

                                    

€ 

˙ ̇ r − r ˙ ϕ 2 +
γ

µ r 2 +
β
µ

r ˙ ϕ = 0 .                                          (20)                  

the solution to these equations is shown in Fig. 8. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Trajectory of the motion of inertons in the rotating central field with 
parameters 

€ 

γ /µ = 1 m3 s–2, 

€ 

β µ = 0.1  s–1; 

€ 

r(0) = 10  m, 

€ 

˙ r (0) = 0, 

€ 

ϕ (0) = 0,  

€ 

˙ ϕ (0) = 0.01 s-1. 
 
 
In Fig. 9 we show the solution to the equations of motion of a batch of inertons 
for the case of simplified potential (18), namely, when it is represented only by 
the Newton-type potential 

€ 

U (r) = −γ / r . 
Figures 4 to 7 give an estimate for the acceleration  of the batch of inertons: 

 to 15 m/s2. 
 
 
 
 
 

 
 
 
 

Fig. 9. Elliptic trajectory of the motion of inertons in the Newton-type potential 
with parameters 

€ 

γ /µ = 1 m3⋅s–2, 

€ 

β µ = 0  s–1; 

€ 

r(0) = 10 m, 

€ 

˙ r (0) = 0, 

€ 

ϕ (0) = 0 , 

€ 

˙ ϕ (0) = 0.01 s-1. 
 
Figures 2, 4, 8 and 9 depict possible patterns of crop circles generated by flows 
of the mantle-crust inertons. 
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Let us estimate now the intensity of inerton radiation needed to form a crop 
circle of total area  m2. Let  be the mass of the mantle-crust 
rocks that generate inertons owing to their magnetostriction activity. We have to 
take into account the magnetostriction coefficient , which describes an 
extension strain of rocks. In view of the fact of that low frequencies should 
accompany geophysical dynamical processes, we can assume that the striction 
activity of a local group of rocks occurs at a low frequency  (i.e. rocks collide 

 times per a time 

€ 

Δt  of radiation of inertons). Having these parameters, we 
can evaluate a flow of mass  that is shot in the form of inerton radiation at 
the striction of rocks:

€ 

µΣ ≈ N C M rocks .  
If we put 

€ 

M ~ 107 kg, 

€ 

C ~ 10−5 , and 

€ 

N = 5 we obtain 

€ 

µΣ ≈ 500 kg.  This mass 

€ 

µΣ  is distributed along the area of  in the form of a flow of the inerton field. 
Let each square metre be the ground for the growth of 1000 stalks. Then 

€ 

105 
stalks can grow in the area of 

€ 

A = 100  m2. This means that each stalk is able to 
catch an additional mass 

€ 

µ = µΣ /10
5  g from the underground inerton flow; 

this value is of the order of the mass of a stalk itself. 
Knowing the mass 

€ 

µ = 5×10−3  kg of the batch of inertons which interacts with 
a stalk and the acceleration of this inerton batch 

€ 

a = 10 to  m/s2, we can rate 
the force of inertons that bends and breaks up stalks in the large area : 

€ 

F = µa ≈ 0.05 to 

€ 

0.075 N. This estimation exceeds not only the threshold 
bending force

€ 

fbend  (9), but also the gravity force 

€ 

fgrav  (10). At the same time the 
inerton force F does not break physically the stalk, because the value of F still 
satisfies inequalities (11). Therefore, the model developed in this work is 
plausible.  
A flow of mass, which is coming as a pulse of inertons from the interior of the 
Earth to its surface, partly compensates the gravitational acceleration at the 
Earth surface 

€ 

g =GM Earth /REarth
2 = 9.81m⋅s-2. This statement can be verified in 

places where crop circles appear most frequently.  
 
5 Kaleidoscope model 
 
This kaleidoscope model gives a static description of inerton structures. We 
assume that a bunch of inertons depicted in the centre of Fig. 10 is reflected 
from the walls, whose geometry was selected rectangular in this particular 
example. Multiple reflections from the walls produce the pattern shown in 
Fig. 10. This model can be assumed as an analogy of geometrical optics with 
light reflecting from the mirrors. Uniting the rotating central field model 
described in the previous section and the kaleidoscope model can generate yet 
more complex patterns. 
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                               Fig. 10. Kaleidoscope mode 
 
 
6 Conclusions 
 
In this study we have shown a radically new approach to the conception and 
description of crop circles. The theory developed is multi-aspect and based on 
first submicroscopic principles of fundamental physics. The theory sheds light 
also on fine processes occurring in the crust and the mantle of the terrestrial 
globe. 
The investigation will allow following researchers to improve the mathematical 
model of the description of shapes of crop circles, to correctly concentrate on 
biological changes in plants taken from crop circles, to reach more progress in 
understanding a subtle dynamics of the earth crust, and to contemplate a more 
delicate approach to the development of new methods of earthquake prediction. 
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