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Abstract Classical mechanics of a particle was gradually complicated and expanded by adding new 

and new attributes, which finally brought to the situation that in principle cannot be verified 

experimentally. Here, a possible scenario for the further development of particle physics is 

suggested, which is based on a deterministic submicroscopic concept that has been developing by 

the author.  

  

1.  Provisions of particle physics related to supersymmetry 

     In classical mechanics the state of a particle is determined exactly and all observables take exact 

values. In the gravitation physics an important role plays spacetime, which in the formalism of 

general relativity became a smooth manifold with a pseudo-Riemannian metric 



ds2  g
 dxdx  of signature (+, -, -, -). Such an approach made it possible to talk about the 

gravitation as a purely geometric phenomenon, a manifestation of the curvature of spacetime. 

Einstein interpreted the 



g  as the gravitational potentials and showed that in matter-free regions of 

spacetime they satisfy 



Rij  0  where 



R are the components of the Ricci tensor. These are the 

Einstein equations. Unlike the Maxwell equations they are nonlinear in the 



g . 

      Contrary to the gravitation physics, quantum physics uses the mathematical model in which the 

states are believed causal and deterministic until measurements are not made. This is the 

Copenhagen interpretation. One of the triumphs of quantum theory and the Copenhagen 

interpretation was an introduction of the wave-particle duality of light; in particular, such 

interpretation was used to explain the phenomenon of the diffraction of light [1,2]. 

     The development of mathematics associated with quantum phenomena and the introduction of 

metric of spacetime was consistently described by Varadarajan [3]. A quantum system is described 

mathematically by using a complex separable Hilbert space 



H . The states of the system are the 

points of the projective space 



P(H) of 



H . In a one-dimensional subspace of 



H  there is a basis 

vector   of norm 1. If the observable (operator) A has a discrete spectrum with eigenvalues 



A1, 



A2, 

… and corresponding (unit) eigenvectors 1 , 2 , ... Then a measurement of A in the state 



 will 

give the value 



Ai  with probability 2|,| i  where 



i 1, 2, ... The complex number ),( i  is called 

the probability amplitude, so that quantum probabilities are computed as squares of absolute values 

of complex probability amplitudes. Since basis vectors 



 i are orthonormal basis of 



H , the following 

normalization relationship is hold: 1|),(| 2i i . 

     A special property revealed in particles was named „spin‟. From the mathematical point of view, 

spin systems of N particles are systems in which all observables have exactly N values. The Hilbert 

space can then be taken to be N
C  with the standard scalar product. The observables are then NN   

Hermitian matrices whose spectra are the sets of values of these observables. The determination of 

states is made by measurements of observables with exactly N distinct values. 

    Although the quantum observables do not form an algebra, they are the real elements of a 

vladimir
Text Box
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complex algebra. Thus one can say that the transition from classical to quantum theory is achieved 

by replacing the commutative algebra of classical observables by a complex algebra with involution 

whose real elements form the space of observables of the quantum system. In quantum theories the 

basic role belongs to the commutation rule between position and momentum of a particle:  

 

                                               iqp ],[ .                                                                             (1) 

 

If the quantum of action, Planck‟s constant  , puts equal to zero, the commutation goes over to zero, 

0],[ qp , which corresponds to the classical case. 

    Therefore a really deeper study of quantum foundations based on relationship (1) started by using 

the noncommutative quantum observable algebra. Quantization, by which the transition from a 

classically described system to a „corresponding quantum system,‟ is a deformation of the classical 

commutative algebra into a noncommutative quantum algebra. The notion of „quantization‟ is 

specified into a defined mathematical operation. 

    The properties of elementary particles and the structure of Lie groups and Lie algebras allowed 

physicists to give rise to an irreducible representation of the Poincaré group of different quantum 

states of an elementary particle. Space translations, time translations, rotations, and boosts, all taken 

together, constitute the Poincaré group. The group elements are the three rotation matrices and three 

boost matrices (as in the Lorentz group), and one for time translations and three for space 

translations in spacetime. The properties of the various particles, in particular their spectra, are 

related to representations of Lie algebras, corresponding to “approximate symmetries” of the 

universe. 

      The next important property in the mathematical description of quantum systems is the notion of 

their symmetry. Symmetries in quantum mechanics describe features of spacetime and particles, 

which are unchanged under some quantum mechanical transformation. In general, symmetry in 

physics, invariance, and conservation laws, are fundamentally important constraints for formulating 

physical theories and models. Symmetries are bijections of the space of states preserving 

measurement probabilities [3]; by the fundamental theorem of projective geometry these are 

therefore given by  U  where U is unitary or antiunitary: ),(),(  UU  or 

),(),(  UU . There are internal symmetries, spacetime symmetries and gauge symmetries. 

     For example, the element of SU(2) that describes the internal symmetry is allowed to depend on 

the spacetime point where the particle is located; these local symmetries are then described by 

functions on spacetime with values in SU(2) [3]. They are called gauge symmetries, and the group of 

all such (smooth) functions is called the gauge group.  

     The so-called isospin symmetry is also characterised by SU(2) group corresponding to the 

similarity between up quarks and down quarks. Similarly, a proton can be transformed into a 

neutron, or into a superposition of a proton and neutron, but not into any other particles. Therefore, 

the transformations move the proton around a two-dimensional space of quantum states. The proton 

and neutron are called an “isospin doublet”, mathematically analogous to how a spin-½ particle 

behaves under ordinary rotation. 

     When these unitary transformations are applied to any of the three pions ( 0 ,  , and  ), it can 

change any of the pions into any other, but not into any non-pion particle. Therefore, the 

transformations move the pions around a three-dimensional space of quantum states. The pions are 

called an “isospin triplet”, mathematically analogous to how a spin-1 particle behaves under ordinary 

rotation. 

     Researchers also consider the so-called symmetry breaking that is describing a phenomenon 



INTERNATIONAL FRONTIER SCIENCE LETTERS(IFSL) ISSN: 2349-4484   

Vol. 1 No. 1  (2014), pp. 84-95     www.isfs.org.in 

 

© INTERNATIONAL SOCIETY OF FRONTIER SCIENCE (ISFS) 

86 

where small fluctuations, which act on a system at a critical point, determine the system‟s fate, i.e. 

which branch of a bifurcation is taken. In a physical system at spontaneous symmetry breaking the 

underlying laws remain invariant under a symmetry transformation, though the system changes 

under the transformation, in contrast to explicit symmetry breaking. As the result, a system is 

transformed from a symmetrical state to an asymmetrical one. 

     Bosons with integral spin and fermions with half-integral spin obey different statistics – Bose-

Einstein (the trivial representation) and Fermi-Dirac (the signature representation), respectively.  

     The spin states of a particle form an irreducible module for SU(2) of dimension 12 j  where  

Z
2
1j  is the spin. Particles with j integral (integral spin) are bosons and with half-integral are 

fermions (half-integral spin). In a quantum field theory that contains interacting particles of both 

spin parities, the Hilbert space H of 1-particle states has a decomposition  

 

                                                       10 HHH                                                                       (2) 

 

where 



H0  is the space of states where there is one boson and  



H1 is the space of states where there is 

one fermion. For the N-particle space the Hilbert space becomes 

 

                                                     )()( 10

1

HHSH dNd

Nd

N





                                            (3) 

 

where  )( 0HS d  is the space of symmetric tensors (corresponds to the Bose-Einstein statistics) and 

)( 1HdN   is the space of antisymmetric tensors (corresponds to the Fermi-Dirac statistics). Thus the 

physicists suggested do not treat separately the bosonic and fermionic cases and the unified 

consideration would result in increased clarity and understanding. Such a unified theory is a linear 

theory where all (linear) objects are systematically graded by Z2, just as the Hilbert space of 1-

particles above was graded into bosonic and fermionic parts. Infinitesimal symmetry of such graded 

spaces is viewed as a type of symmetry that sends bosonic states into fermionic states and vice versa. 

The super commutator is defined by 

 

                                  









oddare,bothif

evenis,ofoneleastatif
],[

babaab

babaab
ba   

 

      These supersymmetries obey a Grassmann, or exterior algebra in which the Fermi fields comply 

not commutation rules but anticommutation rules. There appeared supersymmetric quantum field 

theories, gauge theories and a supersymmetric extension of Einstein‟s theory of gravitation to 

supergravity, which motivated researchers for seeking a unified field theory.  

     Each super particle, when viewed as a unitary representation of the underlying Poincaré group, is 

the direct sum of a collection of ordinary particles, called a multiplet. The members of a multiplet 

are called partners of each other. For a boson there is a superpartner fermion called a bosino and for 

each fermion, there is a superpartner boson called a sfermion: electron – selectron, neutrino – 

sneutrino, quark – squark, photon – sphoton, graviton – gravitino, W   –  Wino , etc. 

     In such an approach the geometry of spacetime is described locally by a set of coordinates 

consisting of the usual ones, which in addition are supplemented by a set of anticommuting 

(Grassmann) coordinates. String theory and membranes consider objects as not point-like but 

extended. Thus spacetime geometry at the Planck scale becomes almost surely non-commutative (as 
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there are no points). At the same time, the supersymmetric approach did not allow one to construct a 

convincing noncommutative geometrical theory that has the Riemann-Einstein geometry as a limit. 

     However, notwithstanding the so remarkable theories developed for about 50 years, particle 

experiments still do not present any proof of the existence of superpartners for known particles. That 

is why particle physicists state about a crisis in physics. Shifman [4] called on his colleagues to stop 

to modify supersymmetry, as the theory has failed experimental tests; he points out it is time to start 

thinking and developing new ideas. Lykken and Spiropulu pronounce: “Yet if superpartners are not 

found, we face a paradigm rupture in our basic grasp of quantum physics” [5]. Thus, if 

supersymmetry does not pan out, scientists need a new way to explain the universe. 

 

2. What particle physicists do not take into account? 

 

     Let us consider major statements accepted by quantum physics at face value without a thorough 

check of their conception and correctness. 

     First of all the commutation rule (1) is transferred to the geometry of space as the most 

fundamental property of the microcosm. This relationship uses as basic at the construction of 

noncommutative geometries. But what is hidden behind such a strange property of the microcosm? 

This question is out of interest of particle physicists.  

    Second, the wave  -function is extremely important in quantum mechanics and quantum field 

theories, however, what properties of a particle does it represent exactly? Max Born ascribed it 

statistical properties – the module |)(| r


  describes the probability of a particle being at the point r


. 

However, Louis de Broglie insisted that the )(r


  should be associated with real physical 

characteristics of the appropriate particle. 

     Third, the notion of a wave-particle is still mystical. De Broglie did not support the unification of 

a moving particle with a wave; he was looking for the double solution theory in which the particle 

and its wave could be treated separately.         

     Forth, the notion of the Compton wavelength, which ascribed a radius of hardness of the particle 

in question, is complete ignored: particles are considered as point-like or as a one-dimensional 

abstract string with about 10 dimensions. 

     Fifth, the notion of spin: particle physicists are not interested in the investigation of this 

phenomenon in detail; they ignore studies of other researchers who try to understand the 

phenomenon.  Nevertheless, the presence of spin in particles is considered as the most essential 

characteristic of particles in the formation of the theory of supersymmetry. 

     Sixth, gravity is still described in the framework of a phenomenological approach and even 

quantum gravity starts from ideas of phenomenological formalism of general relativity. Quantum 

properties of the microcosm are rather ignored. 

     Seventh, dark matter and dark energy are out of the standard model, which directly points out to 

serious incompleteness of the model.   

     Eight, particle physics has never been interested in searching for the answers to such challenges 

as: what is mass, what is electric charge, what is photon, etc.? 

     Ninth, what is the principal difference between leptons and quarks, which interact very unlikly? 

     Tenth, space – what is it? What is the constitution of real physical space?  
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3. A submicroscopic concept 

 

     The standard model of particle physics combines all fundamental interactions in a unified theory 

– the theory of everything. However, it seems more reasonable to start from the theorem of 

something, which is able to clarify the basic notions of quantum physics listed in Section 2. At the 

study of elementary particles researchers use Lie algebra, group theory, topology, symmetry and 

other mathematical disciplines. Thus mathematics provides service to the studies in particle physics. 

On the other hand, mathematics itself is able to generate fundamental physics and we will 

demonstrate this below. 

     The appearance of physics can be done through a pure mathematical analysis of the notion of 

space. Any property of any given object should be consistent with the characteristics of the 

corresponding embedding space. An unknown space can be explored through scanning operators and 

examined with respect to such fundamental notions as measure, distance, dimensionality, fractality 

and topology. These notions were revised a broad sense of totally topologically ordered space by 

Michel Bounias and the author [6-9] with the purpose to analyse the constitution of ordinary 

physical space.  

     One may start from nothing – a flat space that does not manifest itself. Since the original space is 

flat, it does not have Poisson brackets and any other forms of non-commutative features. The Jordan 

and Lebesgue measures involve respective mappings (

   

I) and (

   

M) on spaces which must be provided 

with operations ,  and C . In spaces of the R
n 

type, tessellation by balls is involved, which 

requires a distance for the measure of diameters of intervals. These intervals can be replaced by 

topological balls and the evaluation of their diameter needs an appropriate general definition of a 

distance. A space 

   

E is ordered if any segment owns an infinum and a supremum. That is why a 

distance d  between 

   

A and 

   

B is represented by the relation 

 

                                B)sup A,dist(supB)inf A,dist(inf)BA,( d                                 (4)  

with the distance evaluated through either classical forms or even the set-distance . Any 

topological space is metrizable as provided with the set-distance  as a natural metrics. All 

topological spaces are kinds of metric spaces called “delta-metric spaces”. Distance )BA,(  is a 

kind of an intrinsic case )]BA,([ )BA,(  of B)A,(E  while the latter is called a “separating 

distance”. The separating distance also stands for a topological metrics. Hence, if a physical space is 

a topological space, it will always be measurable. 

       A fundamental segment )BA,(  and intervals ]A ,[A=L )1+(iii  allow one to determine similarity 

coefficients for each interval by i   )A;dist(A )1+(ii B)dist(A,= . 

 The similarity exponent of Bouligand (e) is such that for a generator with 

   

n parts: 

 

                                    1)(
e

],1[


 ni

i .                                                                                        (5) 

Then, when e is an integer, it reflects a topological dimension   

 

                                     /Log Loge n ,                                                                                  (6) 

   

which means that a fundamental space 

   

E can be tessellated with an entire number of identical balls 
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B exhibiting a similarity with 

   

E, upon coefficient 

   

r. 

      The measure of the size of tessellating balls as well as that of tessellated space, with reference to 

the calculation of their dimension is determined through relations (5), (6). A space may be composed 

of members, such that not all tessellating balls have identical diameter. Also a ball with two 

members would have a more complicated diameter. Hence a measure should be used as a probe for 

the evaluation of the coefficient of size ratio needed for the calculation of a dimension.   

      It is generally assumed that some set does exist. This strong postulate was reduced to the axiom 

of the existence of the empty set. It was shown that providing the empty set (Ø) with ( , ) as the 

combination rules with the property of complementarity ( C ) results in the definition of a magma 

without violating the axiom of foundation if the empty set is seen as a hyperset that is a 

nonwellfounded set. 

      It was proved that the magma  C,
 constructed with the empty hyperset and the axiom 

of availability is a fractal lattice. Writing   denotes that the magma reflects the set of all self-

mappings of ( ), which emphasizes the forthcoming results. The space constructed with the empty 

set cells is a Boolean lattice )(S  and this lattice is provided with a topology of discrete space. The 

magma of empty hyperset is endowed with self-similar ratios.  

      Such a lattice of tessellation balls was named a tessel-lattice [6]. The magma of empty hyperset 

is a fractal tessel-lattice [7]. 

     A tessel-lattice of empty set cells represents a primary substrate, which is a physical space. 

Space-time is submitted by ordered sequences of topologically closed Poincaré sections of this 

primary space. These mappings are constrained to provide homeomorphic structures serving as 

frames of reference in order to account for the successive positions of any objects present in the 

system. Mappings from one to the next section involve morphisms of the general structures, standing 

for a continuous reference frame, and morphisms of objects present in the various parts of this 

structure. The combination of these morphisms provides space-time with the features of a nonlinear 

generalized convolution. Discrete properties of the lattice allow the prediction of scales at which 

microscopic to cosmic structures should occur.  

     The fundamental metric of space-time is represented as the extension of 3D coordinates up to the 

4th dimension timeless space through convolution with the volume of space. Fractality of space 

manifests itself through changes in the dimension of geometrical structures: the dimension of a curve 

exceeds 1D and falls in the interval between 1D and 2D; for a volumetric object the dimension may 

lie between 3D and 4D.  

      In a degenerate state the size of a ball, which plays the role of a lattice‟s cell, is associated with 

the Planck length P
353 10616.1/  cG  m. Deformations of primary cells by exchange of 

empty set cells allow a cell to be mapped into an image cell in the next section as far as mapped cells 

remain homeomorphic.  

    The tessel-lattice is specified with quanta of distances and quanta of fractality. The sequence of 

mappings of one into another structure of reference (e.g. elementary cells) represents an oscillation 

of any cell volume along the arrow of physical time. 

     Thus the tessel-lattice represents both relativistic space and quantic void: the concept of distance 

and the concept of time have been defined on it and such space holds for a quantum void (a vacuum) 

since it provides a discrete topology with quantum scales and on the other hand it contains no “solid” 

object that would stand for a given provision of physical matter. 

     When a fractal transformation is involved in the exchange of deformations between cells, a 

change in the dimension of the cell occurs and the homeomorphism is not conserved. The fractal 
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kernel (a local deformation of the tessel-lattice) stands for a “particle” and the reduction of its 

volume is compensated by morphic changes of a finite number of surrounding cells.  

     A particle must be provided with physical properties. First of all this is mass: The mass 

   

mA of a 

particulate ball 

   

A is a function of the fractal-related decrease of the volume of the ball: 

 

                                      1efract

partcelldeg.

fract
)1e()/(  VVmA                                                  (7) 

 

where celldeg.V  is the typical average volume of a cell in the tessel-lattice in the degenerate state; 



V part 

is the volume of the kernel cell of the particle; (e) is the Bouligand exponent, and )1e( fract   the gain 

in dimensionality given by the fractal iteration. Just a volume decrease is not sufficient for providing 

a ball with mass, since a dimensional increase is a necessary condition (there should be a change in 

volumetric fractality of the ball).  

     Therefore, in the tessel-lattice a particle is a contracted kernel-cell. Surrounding cells compensate 

this local deformation by morphic changes, a typical tension of the surrounding tessel-lattice, which 

forms a peculiar deformation coat with a radius identified with the particle‟s Compton wavelength 

)/(Com mch . This radius/diameter of hardness manifests itself in experiments on light scattering 

by particles, as was demonstrated by Compton in 1923 [10]. Note that the existence of a deformation 

coat is a typical situation for a crystal lattice in a solid when a foreign particle or isotope defect 

enters the solid.  

     When a massive particle moves, it pulls its deformation coat with it, i.e. the state of the coat 

migrates from cell to cell by a fractal relay mechanism. The interaction of a moving particle-like 

deformation with the surrounding lattice involves a fractal decomposition process. 

      The remark of Poincaré [11] has so far still been overlooked by the majority of researchers: a 

particle, which moves in the ether, is surrounded with the ether excitations. In the tessel-lattice a 

particle interacts with the surrounding cells and generates some excitations, which is exactly in line 

with Poincaré‟s idea. An appropriate Lagrangian that describes such motion in a simplified form 

looks as follows [12]  

 

                                        xm
T

xmL 
12

2
12

2
1                                                    (8) 

 

where m , x  are the mass and position of the particle and  ,   are the mass and position of the 

particle‟s cloud of excitations, respectively; 1/T is the frequency of collisions between the particle 

and the cloud. These excitations were named inertons, because they represent inert properties of the 

particle (the particle‟s resistance at the particle‟s motion through the space). 

     The Euler-Lagrange equations derived on the basis of the Lagrangian (8) lead to the oscillating 

solution for the particle velocity 

 

                                                       )/sin(10 Ttx                                                        (9) 

 

between the initial value 0  and zero along each section   of the particle path. This spatial 

amplitude is determined as follows: 



 0T . For the cloud of inertons: Tc . These two 

amplitudes become connected by means of relationship  
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                                                   0/ c .                                                                         (10)  

 

    The further analysis allows us to derive the following two relationships 

 

                                                  phhE /,   ,                                                         (11) 

 

where 

   

h is the minimal action of the periodic motion of a particle when the particle is guided solely 

by the tessel-lattice and any influence on the side of external fields or direct contacts with other 

physical systems does not disturb the particle. Here, )2/(1 T  is the frequency of the particle 

oscillations along its path, 0mp   is the momentum of the particle and 



E  is the kinetic energy of 

the particle.    

     On the other hand, relationships (11) for a particle were suggested by de Broglie in 1924, which 

are basic for quantum mechanics. De Broglie suggested that a phase wave with the wavelength 



  

should be linked to the particle with the momentum 



p  by means of relationships (11). In his opinion 

the wave should guide the particle. So, we can see that the de Broglie wave is generated by 

Poincaré‟s ether excitations, i.e. inertons surrounding the particle.  

      Relationships (11) allow one to derive the Schrödinger equation 

 

                                     ),(),()(),(
2

2
2

trEtrrVtr
m

 


.                                    (12) 

 

      The submicroscopic concept operates with the particle and the particle‟s cloud of inertons. 

Conventional quantum mechanics, which was evolved in an abstract phase space on an atom scale, 

works with the wave ψ-function. These two approaches can be combined, as the inerton cloud of an 

entity, which is associated with the entity‟s field of inertia, is mapped into an abstract phase space of 

conventional quantum mechanics in the form of a “mysterious” wave ψ-function.  

     So the amplitude of spatial oscillations of the particle   appears in quantum mechanics as the de 

Broglie wavelength. The amplitude of the particle‟s cloud of inertons   becomes implicitly 

apparent through the availability of the wave ψ-function. Therefore, the physical meaning of the 

wave ψ-function becomes completely clear: it describes the range of space around the particle 

perturbed by the particle‟s inertons. 

      When the speed 0  of a particle is close to the speed of light c , the classical Lagrangian 

 

                                           
22

0

2

0 /1 ccmL                                                                  (13) 

 

is transformed to the form that describes an inner process of emission and absorption of inertons by 

the particle: 

 

                            

 








 


 00

22

02

0

2

0

21
1  xm

T
xxm

cm
cmL  .                 (14) 

 

All this occurs in the section equal to the particle‟s de Broglie wavelength  . The Euler-Lagrange 

equations lead to the same solutions, as is the case of the non-relativistic Lagrangian (8).   
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     The Dirac equation can be derived from the Lagrangian (14) if one introduces “something” 

additional into it. This “something” is an intrinsic motion that can be associated with proper particle 

pulsations [13]. Then an appropriate Hamiltonian has a new term 2

)(

2





c  , which previously was not 

taken into account. This term describes proper pulsations of the particle between a bean-like and 

spherical shape in the section of 



 : 

 

                                            42

0

2

)(

222totalparticle

)(
cmcpcH 
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.                                      (15) 

 

The Hamiltonian (15) shows two possible projections of intrinsic pulsations of the particle: ahead 

and behind. Decomposing the square root in expression (15) one gets a two matrix. This is the inner 

reason why the Dirac equation possesses matrix components associated with the particle spin 

2/
)(




zS , which in the presence of a magnetic induction B  renormalizes the eigenvalue E  of 

the particle to the quantity mBSeE z /
)(

 .  

    A fractal volumetric deformation of a topological ball has been associated with the notion of mass. 

A fractal surface deformation of a topological ball can be associated with notion of elementary 

electric charge [14].  

     So a cell of space whose surface is covered of N needles, can be described by a field vector n


 

( n  is the needle number), and can be associated with the scalar function hhn  )( , i.e. 

)(hnhn 


; so n


 is a co-vector. The spike of each nth needle is able to deviate from its 

equilibrium position, i.e., the bending of the needle from its axis must not be ruled out. The value of 

the displacement decreases from the top to the base of the needle, the latter being fixed. Therefore 

this kind of motion can be related to a vector field (only the motion of a point is described by a 

vector) and can be designated as 
nA


. 

      In conventional symbols the Lagrangian density of the electromagnetic field, which interacts 

with a charge, takes the form  
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The Lagrangian density (16) with the members   (which is absent in the classical Lagrangian for 

the electric charge) allows one to derive the Euler-Lagrange equations that culminate in the Maxwell 

equations for the scalar 



  and vector A


 potentials in the so-called d‟Alambert configuration  
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.                                                    (18) 

    At the elementary level gravity occurs when inertons emitted by a moving particle return to it. 

Evidently the elastic tessel-lattice has to push these inertons back to the centre of emission. This idea 

allows a detailed mathematical study and, moreover, it can be extended to macroscopic objects. In a 
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condensed matter, inerton clouds of vibrating entities overlap forming a total inerton cloud of all the 

entities, which spreads far beyond the object. 

   Now let us consider the phenomenon of gravity. Since inertons are carriers of fragments of the 

particle‟s mass, they carry inert and gravitational properties of the particle. Hence the particle moves 

while disintegrating its mass. Inertons irradiated by the particle come back to it and return fragments 

of its mass and velocity. Such motion can be described by a new kind of a Lagrangian:                       
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Here, T is the same time period of collisions of the particle and its inerton cloud as above; ),( trm


 is 

the current mass of the system of “particle + inerton cloud”; ),( tr


  is the variable that describes a 

local distortion of the tessel-lattice, which can be called a tension. In other words, we introduce a 

new variable for the particle, which means that the mass is not an absolute value but variable. 

Namely, we assume that in the section of   the particle‟s characteristics oscillate between two 

different properties: the speed oscillates between 



0 and zero; the stable alteration of the kernel cell 

oscillates between the deformation 



m  and the tension 



, which can be considered as oscillation of 

the mass between 



m  and zero and the oscillation of the tension between zero and  . 

     The Euler-Lagrange equations for variables m  and 


 allow the solution in the form of standing 

spherical waves, which exhibit the dependence ,/1 r  
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The solution for the distribution of mass (20) shows that at a distance r  the time averaged 

distribution of mass of inertons along the radial ray, which originates from the particle, becomes 

 

                                           
r

m
lm 0

Planck .                                                                             (22) 

 

In this region the tension of space, as following from the solution (21), is 0 .   

    The solution (22) illustrates the availability of a deformation potential r/1  in the environment 

of the particle. In this range cells of the tessel-lattice are a little bit deformed, which induces the 

phenomenon of attraction, as from the distribution (22) we may obtain Newton‟s gravitational 

potential 

 

                                                
r

m
Gu 0 .                                                                            (23) 

 

     In the case of a missive body, the gravitation emerges owing to the body‟s entities, namely, 

vibrations of the entities near their equilibrium positions. The corresponding amplitudes are the 
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entities‟ de Broglie wavelengths. Hence a cloud of inertons covers each entity and these clouds 

overlap forming a unified inerton cloud of the body, which spreads far beyond the body inducing the 

potential (23). 

     Gravity must consist of two components: radial and tangential. The second is always present in a 

test body that is attracted by the larger central object, which was pointed out by Poincaré [11]. It was 

shown [12] that the correct attractive potential is slightly different from the classical Newtonian and 

has the form  











2

22

1
c

r

r

Mm
GU


(24) 

where M and m are masses of the central object and the test body, respectively, and the tangential 

velocity of the test body is r .

     Expression (24) was successfully used [12] to obtain exactly the same equations and the solutions 

for such problems (four classical tests), as the motion of Mercury‟s perihelion, the light deflection by 

the Sun, the gravitational redshift of spectral lines, and the derivation of the Shapiro time delay 

effect.  

     Expression (24) is transparent, unlike the situation with general relativity, in which gravity 

equations are separated from the metric that the equations contain. The submicroscopic concept does 

not predict the black hole solution for gravitating masses and also deny gravitons. At the same time 

the submicroscopic concept allows one to solve the problem of dark matter [13] and dark energy 

[14].  

    Of course inerton field effects were verified experimentally both in the microscopic and 

macroscopic experiments [12,14]. In particular, the correct determination of photons and the 

vibration of entities in solids made it possible to unveil the phenomenon of diffraction of light in 

terms of free photons (excitations of the tessel-lattice) and inertons of the vibrating entities of the 

interferemeter in question [15], which rejects the previous explanation based on the vague idea of 

wave-particle [1,2]. 

4. Conclusion

    Thus the submicroscopic concept clarifies all items listed in Section 2, which so far have been 

neglected by all other particle theories. It has been shown that the real physical space is the tessel-

lattice constituted of topological balls. The dynamic inerton field generated by a moving particle 

induces both the quantum mechanical and the gravitational interaction. Gravity is a pure dynamic 

phenomenon, which, however, has been perceived as a static geometry of general relativity.  

    The microscopic world looks complete deterministic. The de Broglie wavelength   is a spatial 

period of a moving particle. Within the section  , due to the emission and re-absorption of the 

particle‟s inerton cloud, parameters of the particle undergo periodical changes: velocity 

00 0   ; mass mm 0  and the tension 00  ; electric charge ee 0  and the

magnetic charge, i.e. monopole state 00  g ; particle shape: beanlike  spherical  beanlike 

(such internal motion manifests itself in conventional quantum mechanics as a half-integral spin). 

     In the realm of particle physics the theory allows one to operate with the kinetic of a particle 

inside the de Broglie wavelength 



 , which is out the possibility of any other approach.

Supersymmetry predicted new particles but it failed tests. The absence of predicted sparticles in the 
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experiment may be associated with a typical misunderstanding caused by ignorance of the 

submicroscopic behaviour/kinetics of particles. Indeed, supersymmetry does not consider the spin 

kinetics of a particle in the section of 



 . But the particle is specified with three subsystems: the real 

particle (the particable cell), the particle‟s deformation coat, and the particle‟s cloud of excitations. 

In the case of a lepton these excitations are inertons; in the case of a quark they are rather gluons. 

Hence a supersymmetric partner to the particle in question is rather the particle‟s components – its 

deformation coat and the inerton cloud (or gluon cloud for a quark).   

     In the future it seems it will be interesting to apply the submicroscopic concept to such challenges 

as: the phenomenon of confinement, the interaction between quarks through strong and weak forces, 

the dynamics of quarks in baryon, stability of nucleons, and the nuclear forces. The concept is able 

to unveil the kinetics of particles and the particle transformations and hence will open a gateway to 

physics beyond the Standard Model. Nevertheless, for the solution of problems associated with the 

spectrum of particles (i.e. their energy, or mass) quantum field theory remains preferable. 
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