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Abstract

A short review of recent studies of the notion of spin is presented, which shows that
the spin is not a point property of the particle in question but a characteristic that covers
a quite large volume around the particle and also involves the interaction of the particle
with the ambient space. A cloud of excitations named inertons by the author, which
accompany the moving particle, carry out the interaction of the particle with the space
and hence the interaction with another particle. The presence of inertons allows us to
completely resolve the old problem of spin associated with the reasons that provide the
appearance of half-integer angular momentum ℏ/2. Besides, it allows one to learn more
on the behavior of canonical particles in external fields, such as magnetic, electromagnetic
and also inerton.
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1. Introduction

There are many works devoted to the study of different aspects associated with
the notion of spin (see, e.g. monograph [1] and references herein), which usually is
treated as an intrinsic form of angular momentum carried by an electron or another
elementary particle. Spin is considered like a vector quantity, which is an inner
property of a particle and this characteristic is rather isotropic for a free particle.
At the same time, spin has a definite magnitude and orientation, but quantization
makes this orientation different from that of an ordinary vector.

The Dirac’s theory of the electron seems the most suitable for the description of
spin and magnetic moment of the electron and atoms including atoms in condensed
media, and such a situation is not in contradiction with Pauli’s exclusion principle,
which showed detailed experimental and theoretical studies of Oudet and Lochak
[2]. In his further work on spin, Oudet [3 –8] discussed the Dirac equation for the
half-integer spin and angular momentum. He notes that according to the solutions
of the Dirac equation, it is clear that the ns states correspond to just one spin state,
contrary to that is generally supposed. Two sub-shells of the np, namely, the nd and
nf shells correspond to an additional quantum state to the ns states with a different
number of states, which is exhibited with the Zeeman effect. Besides, Oudet notes
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that the same situation takes place at the calculation of the magnetic moment of
different compounds.

Oudet [3–8] notes that such a behavior of spin is different from the classical
notion of spin introduced by Uhlenbeck and Goudsmit [9] who proposed spin just
to explain the two subshells np: nd and nf. Recall that according to Uhlenbeck
and Goudsmit [9], the spin of a particle behaves like an angular momentum and,
therefore, has an associated magnetic moment Ms = gµBS/ℏ where S is the spin
operator, g is a constant introduced to produce the best fit with experiment. The
interaction with a magnetic field is proportional to Ms ·B (this is the basis of the
NMR technique). It is found that good fits to experimental data are obtained when
g = 2, which means that the spin gyromagnetic ratio gµB/ℏ is twice as large as the
orbital gyromagnetic ratio µB/ℏ.

Based on his experiments Oudet [3–7] showed that in the Dirac equation all
the spinor components ψj (j = (1, 4) could be regarded as being an exchange by
“grains” between the electron and its field, where he understood a “grain” to be
an element of the total electron mass. So Oudet’s studies insist on involving some
intrinsic processes inside the electron, which are responsible for its spin. He reasons
that the action associated with the rotation of an electron in a hydrogen atom
cannot be correctly described by the product of two vectors, the momentum p and
displacement dl, which lie in one plane. These two vectors must necessarily have
two components in orthogonal planes so that the action results from exchanges in
volume, i.e. the plane rotation has been the result of two orthogonal rotations.
Thus only when the momentum p is decomposed into two components, Oudet [6]
easily derives the half-integer angular momentum M = ℏ/2. He [9] further says
that there is always the same number of negative and positive values of the angular
momentum, but the contribution proportional to ℏ/2 has always the same direction.
This half-integer contribution is associated with the own rotation of the electron and
such spin contribution is always positive. Accordingly, there is only one type of spin,
but two different sub-shells.

Oudet [6] pointed out that the half-integer numbers belonging to the Dirac model
consistently reinforce the assumption of spin, however, the Dirac approach describes
the properties of a point. Although the studies performed to date show that the
property of spin is more likely related to the particle’s own rotation. Oudet empha-
sized that the own rotation of the electron is a characteristic of the volume and the
study of the properties of a point in classical mechanics or special relativity do not
reveal the characteristics of this volume. The concept of spin escapes both Dirac’s
theory and the theory of Sommerfeld.

Thus, spin, which gives the half-integer angular momentum, is simultaneously a
point-like solution of the Dirac equations and the solution of the complicated motion
of the electron in orbit, as shown by Oudet.

We can also mention recent studies of Olszewski [10] who considers the mechani-
cal angular momentum and magnetic moment of the electron and proton spin using
the uncertainty principle for energy and time. In his model the spin effect is treated
as a consequence of the introduced size of the electron (or proton), which is chosen
to be equal to the particle’s Compton wavelength. Such a hypothesis then allowed
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him to reconsider the spin motion on the basis of the old quantum theory, which
gave a quantum number n = 1/2 as the index of the spin state acceptable for the
electron and proton. However, though the quantum number is suitable with the
experimental data, a helical trajectory suggested for the electron in the hydrogen
atom looks very disputable (no any reasonable potential has been given to keep the
electron in such a path).

In the present paper we consider the spin as it follows from a submicroscopic
theory of space developed by the author [1]. The major principles of the motion of a
particle in space constructed as a mathematical lattice of primary topological balls
is described and it is shown how the particle’s wave ψ-function is interpreted in the
real space, what are its content and structure. The appearance and properties of
the spin are considered in the smallest detail.

2. The electron as an extended object

Recently Hofer [11, 12], investigating his own experiments, has proposed a theory
of extended electrons, in which their wave properties are related to a certain form
of density oscillation. In his theory a free electron traveling along the z-axis with
a constant velocity υ undergoes a density oscillation, which is described by a plane
wave ρ(z, t) = 1

2
ρ · [1 + cos(4πz/λ− 4πνt)] and then the Schrödinger wave function

is determined as
ψ =

√
ρ0 exp {i[2πz/λ− 2πνt]} (1)

The spin of an electron is defined as

ψe2ψ
† = ρ0 · [e2 + sin(2πz/λ− 2πνt)e1] (2)

where the directions of the reference vectors e1 and e2 are perpendicular to the
direction of electron motion. Thereby the spin vector has the form s = 1

2
ψe2ψ

† and
is oriented under an angle of ψ/4 to the direction of the electron velocity vector.
Thus Hofer, using geometric algebra, or Clifford algebra determined the spin of an
electron with respect to the velocity vector of the electron, i.e. as a property of the
electron itself, but not with respect to the external magnetic field. Spin-properties
of the electron are referred to intrinsic field components and such description satis-
fies the measurements of spin in an external field yielding the two possible opposite
orientations. Hofer’s theory allows the consideration of spin-dynamics of single elec-
trons in terms of a modified Landau-Lifshitz equation, which is in agreement with
experimental manifestations of spin. Thus, Hofer’s approach demonstrates the im-
portance of the internal structure of the electron in understanding the notion of
spin.

Lévy-Leblond [13] (see also Ref. 14) performed an important research – he lin-
earized the Schrödinger equation. He started from the Schrödinger equation written
in the operator form

Ŝψ = 0, Ŝ = iℏ
∂

∂ t
+

ℏ2

2m
∆ = Ê − p̂2/(2m). (3)
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The equation is symmetric with respect to time (∂/∂ t) and space (∂/∂ r) derivatives,
but is quadratic in p̂. To reach symmetry, Lévy-Leblond constructed a wave equation
in the form

Θ̂ψ = (ÂÊ +
ˆ⃗
B · ˆ⃗p+ Ĉ)ψ = 0 (4)

where Â,
ˆ⃗
B and Ĉ are linear operators, rather than matrices. This allows him

to split the Schrödinger equation to four linear equations, such that eacg equation
is symmetric with respect to time (∂/∂ t) and space (∂/∂ r) derivatives, but still
is quadratic in p̂. Finally, Lévy-Leblond transformed the a wave equation in the
configuration [

−i
(
0 0
1 0

)
Ê +

(
σ̂ 0
0 σ̂

)
· p̂+ 2mi

(
0 1
0 0

)](
ϕ
η

)
= 0 (5)

Here, the wave ψ-function becomes a 4-component matrix in which

ϕ =

(
ϕ1

ϕ2

)
, η =

(
η1
η2

)
(6)

σ̂ is the vector whose components are the three Pauli matrices, σ̂ = {σ̂1, σ̂2, σ̂3} and

1 =

(
1 0
0 1

)
(7)

is the unit matrix. Hence, the matrix equations (5) decomposes into a system of
two coupled equations for two-component spinors ϕ = (ϕ1, ϕ2) and η = (η1, η2):

σ̂ · p̂ϕ+ i2mη = 0, σ̂ · p̂η − iÊϕ = 0. (8)

In the presence of an external electromagnetic field, the gauge invariance of the
Schrödinger equation requires the known substitution

iℏ∂
∂t

→ iℏ∂
∂t

− eV (r, t), −ℏ∇ → −ℏ∇− eA(r, t) (9)

and then the linear equations of motion (8) become

σ̂ · (p̂− eA)ϕ+ i2mη = 0, σ̂ · (p̂− eA)η − i(Ê − eV )ϕ = 0. (10)

After some transformations equations (10) are finally transferred to the Pauli
equation

[Ê − eV − 1

2m
(p̂− eA)2 +

eℏ
2m

σ̂ · B̂] = 0. (11)

where p̂ = −iℏ∇ and the magnetic induction B = ∇×A.
The last term in equation (11) describes the interaction energy of the intrinsic

magnetic moment of the electron with the external magnetic field.
The intrinsic magnetic moment µ̂ = eℏσ̂/(2m) can be presented via the spin

operator Ŝ = 1
2
σ̂ of the particle studied

µ̂ =
eℏ
m

Ŝ = gµBŜ = 2µBŜ (12)
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where the spin-Landé factor, or the gyromagnetic ratio g, is equal to 2, and µB is the
Bohr magneton. So the linearized theory establishes the correct intrinsic magnetic
moment of a spin-1/2 particle.

In such a way, the existence of spin is a consequence of the linearization of
the wave equations, i.e. a system of two coupled differential equations of first
order, which then are coupled the electromagnetic field. These linear equations
coupled with the electromagnetic field arrive at the Pauli equation (11). Besides,
the Dirac equation, which is obtained by linearization of the Hamiltonian operator
Ĥ =

√
p̂2c2 +m2

0c
4, also discloses the presence of spin in the particle.

Recent experimental studies of spin properties of electrons and neutrons have
displayed the importance of the structure of the space in their vicinity. The mobility
of electrons in the graphene honeycomb lattice indicates that the electron’s half-
integer spin originates from the nearest space around the particles, rather than from
the particles themselves [15].

Some experimental studies (see e.g. Ref. 1, Ch. 3) are interesting because they
point to the fact that the spin of neutrons is not local and has an extension in space
and the neutron’s spin wave function is quite extended and it can influence other
neutrons at a distance. Baeβler [16] reviewed experiments on the gravitationally
bound quantum states of neutrons where the lowest neutron quantum states in a
gravitational potential were distinguished and characterized by a measurement of
their spatial extent. In particular, it was observed an effect of a spin-dependent extra
interaction of the ultra-cold neutron with a gravitational potential. One neutron
spin-component was treated as attractive, the other repulsive at short distances and
even unpolarized neutrons were sensitive to such spin-dependent interactions.

In such a manner, the experiments point to the fact that all the information
about spin lies in components of the wave function that is the product of a quantum
particle. The situation with spin appears as follows. A particle has a dense kernel
that moves with a velocity v and its motion is featured by four components of its
wave function, or four sub-wave functions. The named characteristics when coupled
with an external electromagnetic field create a new characteristic of the particle (i.e.
spin), which is manifested as an intrinsic form of the particle’s angular momentum.

The phenomenon of spin can be clarified only when the nature of the wave
function and its 4 sub-wave functions become complete clear. De Broglie constantly
emphasized the need for searching for the physical meaning of the wave ψ-function.
Hofer [11, 12] claims that the wave ψ-function represents the density (1) of a particle.
In the case of the electron, its wave function additionally receives a Poynting-like
vector of the electromagnetic energy flux that also oscillates by the same rule as the
density. But why does the density oscillate with this specific frequency? No idea
that could lead to the splitting of ψ...

The inner motion of canonical particles was studied in monograph [1] in detail,
which shows that the particle is accompanied with a cloud of spatial excitations
named inertons (Fig. 1). The radius to which inertons spread from the particle is

Λ = λc/υ (13)

where λ is the particle’s de Broglie wavelength λ = h/(mυ), υ is the velocity of
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Figure 1: The wave ψ-function, which in the real space is presented by the core particle
moving in the surrounding of its cloud of inertons. a – the vector velocity of inertons
c⃗inert, which are connected to the particle (c⃗ and ˙⃗x are the velocity of light and the particle
velocity, respectively [1]).

the particle, c the speed of light, m mass of the particle and h Planck’s constant.
Nevertheless, we cannot consider the separation of the particle from the system
{particle + its inerton cloud} as the first step to the description of spin, because
this system as the whole is the primary object whose projection to a phase space is
an abstract wave ψ-function that satisfies the Schrödinger equation. Although the
particle is travelled as a corpuscle through the tessellattice (a mathematical lattice
of primary topological balls) [1], its inertons migrate as excitations in a molecular
crystal (i.e. they are hopping from cell to cell of the tessellattice).

A hint to the reasons of the decomposition of ψ is in the inner oscillations of the
particle mass. The first who construct a dynamics of a particle, which characterized
by a variable mass, was de Broglie’s [17]. Oudet [3–7] also applied the idea of inner
oscillations to the consideration of the spin of the electron. In the submicroscopic
mechanics developed by the author [1], the particle’s mass also oscillates. There-
fore, if the mass of a moving particle periodically changes, we must recognize that
mass, as a volumetric fractal deformation of a cell of the tessellattice, is a variable
characteristic [1]: the volumetric fractal deformation is periodically transferred to a
tense state of the cell, which occurs within a section equals the particle’s de Broglie
wavelength.

Thereby we admit the variability of the mass: the particle’s mass as a local
deformation of the cell of space undergoes periodical transformations to another
physical state, a state of tension (meaning the physical condition of being stretched
or strained). Accordingly, in any quantum mechanical Lagrangian/Hamiltonian, we
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will represent the classical parameter of mass (m) as a variable parameter that is
periodically replaced by tension (Ξ). The frequency of oscillation of the particle
and its inerton cloud is ν = E/h where E is the particle energy and h is Planck’s
constant.

So one pair ϕ = (ϕ1, ϕ2) of a set of four sub-wave functions can be associated
with the kinetic mass m of the particle and the corresponding tension Ξ. These
two sub-wave functions have to be presented by two antagonistic components: ϕ1

is for mass (which is responsible for attraction) and ϕ2 is for the tension (which is
responsible for repulsion). In this case we cover Hofer’s idea expressed in relation
(2), namely, that spin is in fact related to the density of the particle.

The second pair η = (η1, η2) of the four sub-wave functions should have a struc-
ture similar to that of the ϕ = (ϕ1, ϕ2); η and ϕ can describe the left and right
polarization, respectively, i.e. two opposite directions of spin. All the sub-wave
functions spread out to a distance covered by the amplitude Λ (13) of the inerton
cloud, which usually far exceeds the particle’s Compton wavelength λCom :

Λ = λComc
2/υ2. (14)

The initial conditions for a fermion are formed when it acquires a new momentum
at the point of scattering. Therefore for the ϕ = (ϕ1, ϕ2) 4-pair of four sub-wave
functions we have two opposite tendencies: (i) the fermion, acquiring the vector
velocity v, occupies the mass state (the sub-wave function ϕ1); (ii) the fermion
acquiring the velocity v, passes into the tension state (the sub-wave function ϕ2).
This is the real physical sense of antisymmetric wave functions of fermions.

Along the particle path in odd sections λ, the particle emits inertons and the
tension gradually grows in them; in even sections λ, the inertons come back to the
particle and the particle’s tension gradually drops down to the state of mass. So
the particle’s inerton cloud is a carrier of the deformation potential of the particle.
The mass appears as a local deformation, which is responsible for attraction. The
tension component has to have an opposite property – it will induce a local repulsive
potential.

The described situation immediately finds the confirmation regarding the struc-
ture of the four sub-wave functions in Baeβer’s [16] review paper on properties on
neutrons: “one neutron spin-component would be attracted, the other repelled at
short distances”. Hence we naturally come to the Pauli exclusion principle declaring
that two identical fermions cannot occupy the same quantum state simultaneously.
In terms of the submicroscopic concept [1] this means that if two fermions reach the
same place they will be attracted if they are characterized by the opposite sub-wave
functions, ϕ1 and ϕ2. However, if they both are featured by the same sub-wave
functions (i.e. both by ϕ1 and ϕ1 or ϕ2 and ϕ2) the particles will be repelled.

Thus we have derived not only the wave ψ-function, which is the ratio ψ =
m(x, t)/m0. We also have obtained the pair of sub-wave functions ϕ = (ϕ1, ϕ2),
which are responsible for the manifestation of spin [1]

ϕ1(x, t) =
1

2
[1 + cos(kx− ωt)], (15)
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ϕ2(x, t) =
1

2
[1− cos(kx− ωt)]. (16)

The spinor ϕ1 describes the state of the particle when in the initial moment the
particle emits its inertons, as its mass decreases

m(x, t) =
1

2
m0[1− cos(kx− ωt)], (17)

though its tension increases

Ξ(x, t) =
1

2
Ξmax[1 + cos(kx− ωt)]. (18)

For the spinor ϕ2 the situation is opposite:

m(x, t) =
1

2
m0[1 + cos(kx− ωt)]. (19)

Ξ(x, t) =
1

2
Ξmax[1− cos(kx− ωt)]. (20)

where k = 2π/λ and ω = 2π/T . The spinor ψ2 describes the state of the particle
when, at the initial moment, it absorbs its inertons, as its mass increases (19). These
two situations are depicted in Fig. 1.

The Pauli exclusion principle works only in the case when two fermions are close
enough, i.e. when their inerton clouds overlap or at least touch each other, which
means they start to interact only when approaching the distance at least of 2Λ (see
Fig. 1).

3. The half-integer angular momentum

Now let us consider how the half-integer angular momentum appears when we deal
with the described system of {particle + its inerton cloud}.

If a classical particle rotates around a stationary axis with an angular velocity
Ω, then its linear velocity is υ = Ωr where r is the radius of the orbit. For such a
motion the angular momentum is

M = mr2Ω = mυr = pr (21)

where p is the momentum of the particle under consideration.
In the case of a canonical elementary particle such as an electron the situation

will be the same if the radius of the orbit exceeds the amplitude (13) of the parti-
cle’s inerton cloud. That is, if Λ at least several times larger than the radius r of
the orbit, the system {particle + its inerton cloud} can be considered as a typical
classical particle and its angular momentum will be equal to M as the expression
(21) presents.

The realm of quantum mechanics comes when the inequality Λ < r holds where
r. What is really happening? First of all the orbit becomes quantized, i.e. its length
becomes equal to the particle’s de Broglie wavelength λ, namely, 2πr = λ. But what
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does this wavelength actually mean? The submicroscopic concept [1] explains this
as shown in Fig. 2: The particle when moving rubs against cells of space and owing
to the interaction the particle emits inertons. Hence the particle gradually loses its
velocity and also mass because emitted inertons are really carriers of mass. Since the
particle loses its velocity and mass synchronously, we may say that the particle loses
its momentum p within a section equal to the particle’s de Broglie wavelength λ.
Finally the particle must stop. But the real space is elastic. That is why the space
returns the emitted inertons back to the particle, which happens within the next
section λ. Thus along the entire particle path, in each odd section the particle emits
inertons, then in each even section the particle again absorbs its inertons restoring
the initial values of the velocity υ, the mass m and the momentum p. Therefore, 2λ
plays the role of spatial oscillation of the particle.

Figure 2: Particle with inertons. a – the particle emits inertons; its mass disintegrates in
the accordance with the solution (15). b – the particle absorbs inertons, or by de Broglie:
inertons guide the particle; the particle?s mass is restored, which shows the solution (16).

How the particle’s angular momentum should look like at such motion? The
expression (21) clear points out that along the path 2πr only two parameters are
preserved, namely, the radius of the orbit r and the angular velocity Ω. The momen-
tum p of the particle decays to zero (in each odd section of the path) and increases
again to p (in the next even section of the path). Hence for the one circle, which
equals the particle’s de Broglie wavelength, i.e. 2πr = λ, we shall take the average
value of the momentum ⟨p⟩ = p/2. Then the magnitude of the particle’s angular
momentum becomes M = pr/2. Multiplying the left and right hand side of this
expression by 2π we obtain 2πM = pλ/2 from which we immediately derive for the
particle’s angular momentum:

M = ℏ/2. (22)

4. Interactions with external fields

So, the phenomenon of spin includes two possible initial states of the particle: the
mass state (m) and the tension state (Ξ), which are described by the two sub wave
functions ϕ1 and ϕ2, respectively (15) and (16). The Pauli equation (11) imposes
an additional condition – spinors should provide the interaction with an applied
magnetic field.
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The phenomenon of electric and magnetic properties of particles and the photon
was elucidated [1] in the smallest detail. Namely, if the notion of mass is associated
with the volumetric fractal deformation of a cell of space, the notion of the electric
polarization (∇Φ) is related to the surface fractal of the cell studied. The magnetic
property of the cell appears at the motion of this deformed polarized cell; namely,
the magnetic property (A) is a tension of the electric state of the surface of the cell
studied.

The submicroscopic consideration [1] of the Maxwell equations allows us to con-
clude that the spinor sub-wave functions have to relate to two states of vorticity of
the particle: left and right, which are clearly illustrated in Fig. 3. Each charged
moving particle is accompanied with its inerton cloud in which inertons additionally
possess the surface polarization, i.e. inertons carry also electromagnetic properties
– their surface are covered with electric fractals (the electric field generate by the
gradient of the appropriate surface potential, ∇Φ), which periodically changes to
the tension state (i.e., magnetic property, the potential A).

e-
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Figure 3: Motion of the negatively charged particle (i.e. the electron) that creates
inerton-photons in its surrounding. Tangential state of spikes of the surface fractals,
which is related to the creation of the magnetic field, appears on inerton-photons at the
distance Λ from the electron in transverse directions to the line of the electron path. Λ is
the amplitude of the electron’s inerton-photon cloud.

The motion of such electromagnetic core particle and its inerton-photon cloud
can be treated as a vortex in which the surface fractals are subject to libration, left
or right. Let the sub wave function ϕ1 describes the left libration of the surface
spikes of the particle (the unit polarization vector eleft) and ϕ2 is responsible for the
right libration (the unit polarization vector eright).

When the particle comes the odd section of its de Broglie wavelength λ, the
particle’s electric charge state e− is transferred to the monopole state ge− ). After
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coming the even section λ, the particle again acquires its initial state of the electric
charge. In the case of the particle with the positive charge (i.e. the positron), all
the surface spikes are oriented outward of the particle.

In such a manner we may completely clarify the hidden mechanism of the Pauli
exclusion principle. Two particles, whose separation is close to their de Broglie
wavelengths λ1 + λ2 along the line of the sum of their vector velocities or is closer
than the amplitudes of their inerton clouds Λ1 + Λ2, will interact through their
inertons. In other words, the inerton clouds of these particles must overlap. The
particles will be attracted if their sub wave functions are in counter phase, namely,
if one particle is characterized by the mass state and the left vorticity and the other
one by the tension state and the right vorticity. If the two characteristics in two
different particles are the same, they will be repelled. For example, two particles
shall be repelled if each of them is in the mass state (or in the tension state) and
has the same vorticity.

Usually in particle physics researchers use the term ‘helicity’ – a combination of
the spin and the linear motion of a subatomic particle. Besides, in electrodynamics,
particularly in optical physics, researchers use the term ‘polarization’ (left, right,
circular, etc.) in application to photons. Here, we use the term ‘vorticity’ just
to demonstrate the origin of the phenomenon, though all three characteristics –
vorticity, helicity and polarization – work together (though the term ‘polarization’
is generally the most universal).

Formally a stationary magnetic field is generated by a current, as the fourth
Maxwell equation prescribes, ∇ × B = µ0j . From the submicroscopic view point
[1] the situation looks as follows. In a flow of charged particles each of the particles
creates its proper inerton-photon cloud that spreads up to a distance provided by
the amplitude of the inerton cloud (in the present case, the inerton-photon cloud)
Λ = λc/υ (13). In the cloud, the state of inerton-photons gradually changes from
pure electrical polarization (near the particle) to pure magnetic polarization (at the
distance Λ in transverse directions to the particle path). Fig. 3 accounts for the
mechanism of the formation of magnetic field. The vector potential A is the origin
of the magnetic field, which is evident from the fourth Maxwell equation written in
terms of the vector potential A and the magnetic monopole g:

∇× (∇×A) = gv, or ∇(∇2 ·A) = gv. (23)

Hence the magnetic monopole g is the source for the vector potential A and, there-
fore, for the magnetic field B.

It is interesting to consider at the submicroscopic level how a stationary magnetic
field interacts with the particle spin. For the electron it is obvious: its inerton-
photons induce the stationary magnetic field around the electron (these inerton-
photons are shown in Fig. 3 as cells with bending spikes). These field carriers
coming back to the electron and touch it when it is in the monopole state g, which
turns the electron to one of the two possible paths. Namely, the energy of the
electron changes by the value of E↑(↓) = µ̂zBz, where µ̂z is the z-projection of the
electron’s intrinsic magnetic moment and Bz is the stationary magnetic field directed
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along the z-axis. In the explicit form

E↑(↓) = ±1

2
eℏBz/m. (24)

If the orientation of Bz corresponds to the vorticity of g, then in expression (24)
we shall choose the sign “+” if the orientation of Bz is opposite to the vorticity of
g, we choose the sign “−” .

Fig. 3 accounts for why the moving electron experiences a magnetic field but
not an electric one. This is because a shell of the electron?s inerton-photon cloud is
characterized by magnetically polarized inerton-photons.

Nevertheless, the magnetic moment of an electron can be controlled also with
the help of electrical signals, which is an important task in spintronics (see, e.g. Ref.
18). The electron can be subjected to an oscillating electric field and as a result
the electron periodically changes its position. A change in the spatial coordinate
leads to a change in the spin-orbit interaction and the appearance of an effective
alternating magnetic field, which, in turn, causes the spin of the electron to rotate
(the Rabi oscillations).

One more filed that can influence electrons and their magnetic moments is an
inerton field. Inerton signals, as carriers of mass, can easily be absorbed by the
electron’s inerton-photon cloud because inertons in the cloud have the same physical
properties as inertons of the inerton signal. Especially actively inerton signals can be
absorbed when their frequency is in a resonance with the frequency ν of the electron
as this frequency also is responsible for the exchange of inertons between the core
cell (i.e. the electron itself) and its inerton cloud. An absorbed inerton can provoke
a slowdown in electron movement because the electron has become heavier. Such
an excited state may relax through the emission of a photon, which for example [19,
1] takes place in the phenomenon of sonoluminescence.

5. Summary

So, a set of the following characteristics of a canonical particle are responsible
for its spin-1/2:

• The motion of the particle is associated with its rubbing against the real space,
which is an actual substrate, and due to such interaction, a cloud of inertons
having a radius, or amplitude Λ appears around the particle;

• The particle together with its inerton cloud are projected as the particle’s wave
ψ-function into the formalism of conventional quantum mechanics;

• The moving particle periodically comes from the mass state (m) to the tension
state (Ξ) and the particle’s de Broglie wavelength λ acts as the spatial period
in this oscillating process;
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• The wave ψ-function is a four component spinor: the right spinor with the
components (ϕ1, ϕ2) and then left spinor with the components (η1, η2). The
1th component relates to the mass m and the 2d component relates to the
tension Ξ of the system {particle + its inerton cloud};

• The particle has to be charged (e), which at the motion is periodically trans-
ferred (with the spatial period of λ) to the monopole state (g), that can be
right or left.

If particles are either combined (bosons) or quasi-particles (photon or inerton),
then their spin is integer or zero.

Thus, basic properties of the spin-1/2 are the presence of the charged state on the
surface of the particle in question and the direction of polarization of the monopole
state – left or right. Spin-1/2 is an integral property of a moving particle, which is
associated with a libration of the surface fractals, i.e. spikes, which is given by the
initial conditions – to the left or right. The half-integer angular momentum ℏ/2 of a
spin-1/2 particle is caused by the periodical decay of the particle momentum, which
is oscillated between the magnitudes p and 0 within each odd and even sections of
the particle path.
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