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ABSTRACT 

 
In some recent papers (G. ‘t Hooft and others) it has been argued that 
quantum mechanics can arise from classical cellular automata. Nonetheless, 
G. Shpenkov has exibited that the classical wave equation makes it possible 
to derive a periodic table of elements, which is very close to Mendeleyev’s 
one, and describe also other phenomena related to the structure of molecules. 
Hence the classical wave equation complements Schrödinger’s equation, 
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which means the appearance of a cellular automaton molecular model 
starting from classical wave equation. The other studies show that the 
microworld is constituted as a tessellation of primary topological balls. The 
tessellattice becomes the origin of a submicrospic mechanics in which a 
quantum system is subdivided to two subsystems: the particle and its inerton 
cloud, which appears due to the interaction of the moving particle with 
oncoming cells of the tessellattice. The particle and its inerton cloud 
periodically change the momentum and hence move like a wave. The new 
approach allows us to correlate the Klein-Gordon equation with the 
deformation coat that is formed in the tessellatice around the particle. The 
submicroscopic approach shows that the source of any type of wave 
movements including the Klein-Gordon, Schrödinger, and classical wave 
equations is hidden in the tessellattice and its basic exciations – inertons, 
carriers of mass and inert properies of matter.  

 
Keywords: Schrödinger equation, Klein-Gordon equation, classical wave 
equation, Shpenkov’s model, periodic table of elements, molecule, cellular 
automata, submicroscopic concept, tessellettice, inertons 
 

 
INTRODUCTION 

 
Elze [1] and Shpenkov [2] wrote about possible re-interpretation of quantum 

mechnics (QM) starting from classical automata principles. This is surely a fresh 
approach to QM, based on some authors including ‘t Hooft [3]. In a series of 
papers Shpenkov [2, 3-14] draws attantion to the fact that the spherical solution of 
Schrödinger’s equation says nothing about the structure of molecules; the 
spherical solution and its comparison with experimental data are hardly discussed 
properly in textbooks, with an excuse that it is too complicated.  
       According to Shpenkov [2, 3-14], the classical wave equation is able to derive 
a periodic table of elements, – which is close to Mendeleyev’s periodic table, – 
and also other phenomena related to the structure of molecules. Hence it seems 
Shpenkov’s interpretation of classical wave equation can complement 
Schrödinger equation.  
       However, the Schrödinger equation is a quantum equation that desdcribes the 
motion of the appropriate particle-wave since all quantum objects manifest 
charcatiristics of both particles and waves. Considering Shpenkov’s results, one 
can ask why do the particle’s characteristics dissapier and what exactly is the 
subject of purely wave behaviour in a quantum system? 
       In order to answer these questions, we involve recent studies of 
Krasnoholovets (see, e.g. Ref. [15]), in which a submicroscopic concept has been 
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developed. Namely, it has been shown how the motion of a canonical particle 
occurs in physical space constructed as a cellular structure named the tessellattice.  
       In this work we carry out studies of the Schrödinger equation and wave 
equation and show how they both are related to the tessellatice that forms their 
essence and fills with physical content. 
 

 
 
 
 

SCHRÖDINGER EQUATION VS. CLASSICAL WAVE EQUATION 
(OF SOUND) 

 
Shpenkov’s work is based on [13]: (1) Dialectical philosophy and dialectical 

logic; (2) The postulate on the wave nature of all phenomena and objects in the 
universe. He uses the classical wave equation 

 

                       
                    (1) 

 
This equation is also known as the wave equation of sound or string vibration 
(see, e.g.Refs. [16, 17]). 
 

Shpenkov shows that the classical wave equation is able to: 
a. Derive a periodic table of elements (slightly different from but close to 

the Mendeleyev’s periodic law) based on spherical solution of his 
standing wave equation [10]; 

b. Give a dynamical model of elementary particles [6]; 
c. Derive binding energy of deuterium, tritium, helium and carbon [9]; 
d. Derive the atom background radiation of hydrogen which corresponds to 

the observed COBE/CMBR (Cosmic Microwave Background Radiation) 
[4]; 

e. Derive the shell-nodal model of atoms and molecules [7]; 
f. Explain anisotropy of graphene [13]; 
g. Describe the shell-nodal picture of carbon and grapheme [12]; 
h. Describe electron “orbitals”; 
i. Describe electron “spin”; 
j. Derive neutron magnetic moment; 
k. Derive proton magnetic moment; 
l. And other things [11]. 

  
ΔΨ̂ − 1

c2

∂2Ψ̂
∂t2 = 0.
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Therefore, it seems that Shpenkov’s wave model of particles and molecules 
may be a promising alternative to complement the standard quantum/wave 
mechanics. 
        Besides, Shpenkov points out to some serious weaknesses associated with 
(spherical solution of) Schrödinger’s equation of a quantum system, which is in 
the potential field of one or another nature: 

i. Its spherical solution is rarely discussed completely, though the complete 
spherical solution of Schrödinger’s wave equation does not agree with 
any experiment. 

ii. The Schrödinger equation is able only to arrive at hydrogen energy 
levels, and it has to be modified and simplified for other atoms. For 
example, physicists are forced to use an approximate approach called 
Density Functional Theory (DFT) in order to deal with an N-body system 
[18]. 

iii. The introduction of variable wave number k into the Schrödinger 
equation, depending on electron coordinates, and the omission of the 
azimuth part of the wave function, were erroneous [19]. Schrödinger’s 
variable wave number should be questioned because the potential 
function cannot influence the wave speed or consequently the wave 
number. 

iv. Introduction of the potential function V into the wave equation, which 
results in dependence of the wave number k on the Coulomb potential, 
generates divergences that do not have a physical justification. They are 
eliminated in an artificial way [5, p. 27]. 

v. Modern physics erroneously interprets the meaning of polar-azimuthal 
functions in Schrödinger’s equation, ascribing these functions to atomic 
“electron orbitals” [14, p. 5]. 

vi. Schrödinger arrived at a correct result of hydrogen energy levels using 
only a radial solution of his wave equation, with one major assumption: 
the two quantum numbers found in the solution of his wave equation 
were assumed to be the same with Bohr’s quantum number [8]. 

vii. Quantum mechanics solutions, in their modern form, contradict reality 
because on the basis of these solutions, the existence of crystal 
substances-spaces is not possible [5, p. 26]. 

viii. Schrödinger’s approach yields abstract phenomenological constructions, 
which do not reflect the real picture of the micro-world [8].  

ix. Schrödinger himself in his 1926 paper apparently wanted to interpret his 
wave equation in terms of vibration of string [20, 21]. This is why he did 
not accept Born’s statistical interpretation of his wave equation until he 
died.  

 
       In the initial variant, the Schrödinger equation had the following form [8]: 
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                                       (2) 

      
The wave function satisfying the wave equation (2) is represented as 

  
                         (3) 

 
where  is the complex amplitude of the wave 
function because 
 

                                                                (4) 
        

For standard method of separation of variables to solve the spherical 
Schrödinger equation (see e.g. Refs. [22, 23]). 

Equations for the funtions Φ, Θ and T are known in the theory of wave fields. 
Hence these equations presented nothing new. Only the R was new. Its solution 
turned out to be divergent. However, Schrödinger together with H. Weyl (1885-
1955), contrary to the logic of and all experience of theoretical physics, artificially 
cut off the divergent power series of the radial function R(r) at a κ-th term. This 
allowed them to obtain the radial solutions, which, as a result of the cut off 
operation, actually were the fictitious solutions [8]. 

Furthermore, it can be shown that the time-independent Schrödinger equation 
[22] 

                                                       (5)

     
can be written in the form of standard wave equation [8] 
 

                                                             (6) 
                             

where  

             .                                                  (7) 

            
Comparing equations (2), (5) and (6), we obtain [8] 
 

   
ΔΨ + 2m

!2 W + e2

4πε0r
⎛

⎝⎜
⎞

⎠⎟
Ψ = 0

  Ψ = R(r) Θ(θ ) Φ(ϕ) T (t) =ψ (r,θ ,ϕ) T (t)

  Ψ(r,θ ,ϕ) = R(r)Θ(θ ) Φ(ϕ)

  Φm(ϕ) = Cm e ±imϕ

   
∇Ψ + 2m

!2 (E −V )Ψ = 0

  ∇Ψ + k 2Ψ = 0

   
k = ± 2m

!2 (E −V )
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               ,                                    (8) 

                         
which means that the wave number k in Schrödinger’s radial wave equation is a 
quantity that varies continuously in the radial direction. Is it possible to imagine a 
field where the wave number, and hence the frequency, change from one point to 
another in the space affected by the field? Of course, it is not possible. Such wave 
objects do not exist in Nature. 

 
SHPENKOV’S INTERPRETATION OF CLASSICAL WAVE 
EQUATION    
 

 
Shpenkov suggested starting the study of the wave equation in the form  

                                                                        (9) 

instread of the standard classical wave equation (1). In eq. (9) the wave number 
 is invariable [5]. Here, ω denotes a fundamental carrying frequency of 

the wave field at the corresponding level of space, and c denotes the speed of 
light. In order to correct the faults of wave mechanics, it is necessary to write 
down the above wave equation that meets the conditions: (a) the wave number is 
constant, and (b) the azimuth factor must be taken into consideration along with 
radial R(r) and polar factor of the wave-function [5]. 

In this case, the differential equation for the radial factor R(r) is: 

                            (10) 

where ρ=kr .      
Shpenkov suggests a kind of a fundamental wavelength corresponding to 

expression (9) equal to  
 

       m,    s–1       (11) 
 
because it is one-half of a mean value of the interatomic distance in a solid.  

The detailed analysis to find the spherical solution of equation (9) is discussed 
in Shpenkov’s other papers [10, 7]. Some consequences of the solution of 
Shpenkov’s interpretation of the classical wave equation are [5]: 

a. As masses of atoms are multiple of the neutron mass (or hydrogen atom 
mass), following Haüy’s ideas makes it reasonable to suppose that any 

   
k = ± 2m

!2 W + e2

4πε0 r
⎛

⎝⎜
⎞

⎠⎟

  
∇Ψ + ω 2

c2 Ψ = 0

  k =ω / c

  
ρ

d 2Rl

d 2ρ
+ 2ρ

dRl

dρ
+ ρ − l(l +1)⎡⎣ ⎤⎦Rl = 0

   ! e = c /ω e = 1.603886998×10−10

  ω e = 1.86916197 ⋅1018
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atom, like the elementary Haüy’s molecule, is the neutron (H-atom) 
molecule. 

b. Therefore, atoms should be considered as neutron (H-atom) quasi-
spherical multiplicative molecules. The word ‘multiplicative’ means that 
strong bonds must couple particles constituted of these elementary 
molecules, which we call multiplicative bonds. 

c. Potential polar-azimuthal nodes of spherical shells in stable atoms (nucleon 
molecules) contain by two coupled nucleons. 

d. Polar potential-kinetic nodes (not filled with nucleons in the most 
abundant and stable atoms) are ordered along the z-axis of symmetry (in 
spherical coordinate system) of the atoms. 

e. Exchange (interaction) between completed nodes inside (strong) and 
outside (electromagnetic) of the atoms is realised by exchange charges of 
with the fundamental frequency (11). 

f. Principal azimuth nodes of the wave space of atoms are marked by 
ordinal numbers. These numbers coincide with the ordinal numbers of 
elements of Mendeleyev’s periodic table. The quantity of neutrons, 
localized in one node, is equal to or less than two.  

g. Arranging atoms with the same or similar structure of outer shells one 
under another, one arrives at the periodic-nonperiodic law of spherical 
spaces that constitutes periodic table, slightly differing from the 
conventional one of Mendeleyev. 

There are of course other researchers who use the classical wave equation to 
study atoms and particles (see e.g. Mills [24] and Close [25]).  

 
CORRESPONDENCE BETWEEN CLASSICAL WAVE EQUATION 
AND QUANTUM MECHANICS     
 
       A connection between classical and quantum mechanics has been studied at 
least by several researchers (see e.g. Refs. [26-28]). Ward and Volkmer [29] 
discussed a relation between the classical electromagnetic wave equation and 
Schrödinger equation. They derived the Schrödinger equation based on the 
electromagnetic wave equation and Einstein’s special theory of relativity. They 
began with electromagnetic wave equation in one-dimensional case 

 

                    .                                                  (13) 

            
This equation is satisfied by plane wave solution: 

 

  

∂2 E
∂x2 − 1

c2
∂2 E
∂t2 = 0
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                ,         (14) 
 

Where 
 

and  are the spatial and temporal frequencies, 
respectively. Substituting equation (14) into (13), then we obtain 

 

                                                   (15) 

       
or 

                                                  (16) 

      
which arrives us to a dispersion relationship for light in free space: . This 
is similar to the wave number k in eq. (8).  
       Then, recall from Einstein and Compton that the energy of a photon is 

 and the momentum of a photon is , which allows us to 
rewrite eq. (14) using these relations: 

                     .                                                  (17)
             

Substituting expression (17) into eq. (13) we find 
 

                                                (18)

         
which results in the relativistic total energy of a particle with zero rest mass 

 
                    .                                                   (19)

        
Following de Broglie, we may write the total relativistic energy for a particle with 
non-zero rest mass  

 
             .           (20) 

      
Inserting expression (20) into eq. (18), it is straightforward from (15) that we get 

 

  E(x, t) = E0 ei(kx−ωt )

  k = 2π / λ  ω = 2πν

  

∂2

∂x2 − 1
c2

∂2

∂t2

⎛

⎝⎜
⎞

⎠⎟
E0 ei(kx−ωt ) = 0,

  
k 2 − ω 2

c2

⎛

⎝⎜
⎞

⎠⎟
E0 ei(kx−ωt ) = 0,

  k =ω / c

  ε = hv = !ω    p = h / λ = !k

   E(x, t) = E0 e
i
!

( px−εt )

   
− 1
!2 p2 − ε 2

c2

⎛

⎝⎜
⎞

⎠⎟
E0 e

i
!

( px−εt )
= 0,

  ε
2 = p2c2

  ε
2 = p2c2 + m0

2c4
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                                             (21) 

        
which is the Klein-Gordon equation [30, 31] for a free particle [29]. Now we want 
to obtain Schrödinger equation, which is non-relativistic case of eq. (21). The first 
step is to approximate  as follows 

 

        .         (22) 

       
After some approximation steps, Ward and Volkmer [29] arrived at the 
Schrödinger equation 

                        ,           (23) 

      
Where the non-relativistic wave function f is also constrained to the condition 
that it be normalisable to unit probability. 
       Hilbert and Batelaan [32] explored equivalence between the quantum and 
acoustic system. A simple physical system was discussed, which mirrorred the 
quantum mechanical infinite square well with a central delta well potential. They 
find that the analytic solution to the quantum system exhibits level splitting, as 
does the acoustic system. They compare the acoustic resonances in a closed tube 
and the quantum mechanical eigen-frequencies of an infinite square well and 
showed that the acoustic displacement standing wave is 

 
                                                             (24)

     
for the nth resonance. Eq. (24) has the same shape as the quantum mechanical 
wave function.  

So we can conclude that there exists formal connection between the classical 
wave equation and Schrödinger equation, but it still requires some assumptions 
and approximations. Shpenkov’s interpretation of classical wave equation looks as 
more realistic for atomic and molecular modeling. 
 

TWO ROUTES TO CELLULAR AUTOMATA MODEL OF WAVE 
EQUATION  
 

   
∇2 −

m0
2c2

!2

⎛

⎝
⎜

⎞

⎠
⎟ Ψ = 1

c2
∂2Ψ
∂t2 ,

  ε
2 = p2c2 + m0

2c4

  
ε = m0c2 1+ p2

m0
2c2 ≈ m0c2 + p2

2m0
≈ m0c2 +ℑ

   
− !

2

2m
∇2φ = i! ∂φ

∂t

  
ξ(x) = ξmax sin nπ x / (2a)( )
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A plausible method to describe cellular automata model of wave equation was 
depicted by Yang and Young [33]. For the 1D linear wave equation, where c is 
the wave speed they presented a scheme 
  

                                                       (25) 

  
After some steps eq. (25) can be rewritten in a generic form (by choosing 

) as follows , which is reversible under certain 
conditions. This property comes from the reversibility of the wave equation 
because it is invariant under the transformation: t → −t. 

O’Reilly has shown that the coupled Maxwell-Dirac electrodynamic system 
can be implemented in an analog cellular-automaton operating within a 3D 
regular face-centered cubic lattice [34]. The result of this approach can be 
expressed in terms of a second order wave equation, namely:  He 
concludes that the second order wave equation is arguably one of the simplest 
possible continuous-valued cellular automata update equations that do anything 
physically interesting, though all of electrodynamics can be built of elaborations 
of this one fundamental interaction.  

Thus, cellular approach allows one to construct equations that describe 
physical systems without using second order equations.  

 
 

THE TESSELLATTICE AS THE SOURCE FOR THE FORMALISM 
OF CONVENTIONAL QUANTUM MECHANICAL  
 

A detailed theory of real physical space was developed by Bounias and 
Krasnoholovets strating from pure mathematical principles (see e.g. Ref. [35]). A 
submicroscopic theory of physical processes occurring in real physical space was 
elaborated by Krasnoholovets in a series of works (see e.g., monograph [15]). 
Those studies show that our ordinary space is constructed as a mathematical 
lattice of primary topological balls, which was named a tesselllattice. In the 
tesselllattice, balls play the role of cells. This is a physical vacuum, or aether. 
Matter emerges at local deformations of the tessellattice when a cell (or some 
cells) changes its volume following a fractal law of transformations. Such a 
deformation in the thessellatie can be associated with the physical notion of mass.  

The motion of a fractal-deformed cell, i.e. a mass particle, is occurred with 
the fractal decomposition of its mass owing to its interaction with ongoing cells of 
the tesselllattice. Such an interaction generates a cloud of a new kind of spatial 

		

ui
n+1 −2uin +uin−1

Δt( )2
= c2

ui+1
n −2uin +ui−1n

Δx( )2
.

		Δt = Δx =1, t = n 		ui
t+1 +ui

t−1 = g(ut )

		 si
t+1 = si

t + !si
t+1.
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excitations named ‘inertons’. This means that “hidden variables” introduced in the 
past by de Louis Broglie, David Bohm and Jean-Pierre Vigier have acquired a 
sense of real quasiparticles of space.  

Thus in monograph [15] it has been shown that inertons are carriers of a new 
physical field (the inerton field), which appears as a basic field of the universe. 
Inertons as quasi-particles of the inerton field are responsible for quantum 
mechanical, nuclear and gravitational interactions of matter. 

A particle moving in the tessellatice is surrounded with its inerton cloud. This 
picture can easily be compared with the formalism of quantum mechanics because 
the particle wrapped with its inerton cloud can be projected to the particle’s wave 
y-function determined in an abstract phase space. In such a pattern, the 
overlapping of y-functions of nearest particles means that the particles’ inerton 
clouds overlap and thus we obtain real carriers of the quantum mechanical 
interaction, which provide a short-range action between the particles studied.   

 The particle’s de Broglie wavelength l plays the role of a section in which 
the moving particle emits its inerton cloud and in the next odd section l these 
inertons come back to the particle passing on the momentum to it.  

How can we write the interaction of a moving particle with its inerton cloud? 
The interaction can be written between the particle and an ensemble of inertons, 
which accompany the particle. The ansemble is presented as one intergral object, 
an inerton cloud. The speed  of the particle the particle satisfies the inequality 

. At such presentation, our study is significantly simplified and is reduced 
to the consideration of a system of two objects: the particle and its cloud of 
inertons, which the particle periodically emits and adsorbs when moving along its 
path. In this case the Lagrangian (2.1) is transformed to the following one written 
in two-dimensional Euclidean space 

                  .              (26) 

 
In the Lagrangian (26)(2.49) the first term describes the kinetic energy of the 

particle with the mass m and the velocity , which moves along the axis X; the 
second term depicts the kinetic energy of the whole inerton cloud whose mass is 

 and its center-of-mass has the coordinate  along the particle’s path and  
is the transverse coordinate; the third term is the interaction energy between the 
particle and the inerton cloud where 1/T is the frequency of their collisions. 

By using the substitution 
 
                              ,                             (27)   

 
we carry out a kind of a canonical transformation that leads to the following 

 υ0

  υ0 << c

   
L = 1

2 m0 !x
2 + 1

2 µ0 ⋅ ( !χ || )2 + ( !χ⊥ )2⎡⎣ ⎤⎦ − 2π
T

m0µ0 x !χ⊥

  !x

 µ0  χ
|| χ⊥

   
!x⊥ = "!χ +2π m0 / µ0 x / T
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Lagrangian 
 
                      .               (28) 

 
We can see from the effective Lagrangian (28)(2.51) that in such a 

presentation the particle’s behavior is described as a classical harmonic oscillator 
and the accompanying inerton cloud moves by its own hidden principle (though it 
does not disturb the particle). 

The Hamiltonian function according to the definition 
 
                                       . 

In our case the Hamiltonian is 
 
                                      .                (29) 
 
The effective Hamiltonian based on the Lagrangian (28)(2.51) of the 

oscillating particle in the system of the center-of-mass of the particle and its 
inerton cloud in the explicit form becomes 

 
                               .                            (30) 

 
Solutions of the equations of motion given by the Hamiltonian (30) are well 

known for different presentations. In particular, the function (30) allows one to 
derive the Hamilton-Jacobi equation 

 
                                      (31) 

 
from which we obtain the equation for a shortened action 

 

                          .                 (32) 

 
The function (32)(2.55) enables the solution x as a function of t in the form 

 

                             .                                           (33) 

 
Now we can calculate the increment DS1 of the action (32)(2.55) of the 

   
!L = 1

2 m0 "x
2 − 1

2 (2π / T )2 m0 x2 + 1
2 µ0 ⋅ !"χ

2 + ( "χ || )2( )

   
H = !Qi∂L / ∂

i
∑ !Qi − L

   H = !x ∂L / ∂ !x + "!χ∂L / ∂ "!χ − "L

  
H = p2 / (2m0 ) + m0 (2π / T )2 x2 / 2

  (∂S1 / ∂x)2 / (2m0 )+ m0 (2π / T )2 x2 / 2 = E

  
S1 = p d x

x0

x

∫ = 2m0 [E− (2π / T )2 x2 / 2]
x0

x

∫ d x

  
x =

2E / m0

2π / T
sin (2π t / T )
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particle during the period T; in terms of the action-angle variables 
 

                                   

 

               .         (34) 

 
The final result (34) can be rewritten as follows 
    
                                                                  (35) 

 
where the notation  is entered. 

Since the constant E is the initial energy of the particle, i.e., , the 
increment of action (35) can also be presented in the form 

                               (36) 
where the parameter  is the spatial amplitude of oscillations of the particle 
along its path. 

If we equate the increment of the action  to the Planck constant , we 
immediately arrive at the two major relationships of quantum mechanics 
introduced by de Broglie for a particle: 

 
                 ,     .                              (37) 
 
Thus the amplitude of special oscillation of a particle is exactly the particle’s 

de Broglie wavelength. 
Having obtained the relationships (37), we can present the complete action for 

a particle 

                                        (38) 

in two equivalent forms: 
                                              (39) 

and 
               .                 (40) 
 
The relationships (39), (40) and (37) allow the derivation of the Schrödinger 

equation. If in a conventional wave equation 

   
ΔS1 = p dx!∫ = 2m0 E − m0(2π / T )2 x2( )!∫ d x

   
= 2m0 E − E sin2(2π t / T )( )!∫ 2E / m0 cos(2π t / T ) dt

  
= 2E cos2

0

T

∫ (2π t / T ) dt
  
= 2E t

2
+ sin(4πt / T )

4(2π / T )
⎛
⎝⎜

⎞
⎠⎟

t=0

t=T

= ET

  ΔS1 = E ⋅T = E /ν

  ν = 1/ T

  E = 1
2 m0υ0

2

  
ΔS1 =

1
2 m0υ 0

2 ⋅T = m 0υ0 ⋅
1
2υ 0T = m 0υ0 ⋅λ

l

  
ΔS1 h

 E = hν   λ = h / (m0υ0 )

  
S = S1 − Et = p d x

x

∫ − Et

  
S = m0υ0 x − E t

  S = h ⋅(x / λ − ν t)
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                                                                            (41) 

(where  is the average velocity of the particle in the spatial period l) we insert 
a wave function, whose phase is based on the action (40),  

 
                                  ,                  (42) 

 
and set , we get the wave equation in the following presentation: 

                                     .                               (43) 
 
Then putting  and extracting the momentum p from the function (32) 

(i.e., ) we finally obtain a conventional time-independent Schrödinger 
equation 

                 .                               (44) 

 
Thus, we can see that the moving system of a particle and its inerton cloud 

obyes the Schrödinger equation.  
 
THE PARTICLE’S DEFORMATION COAT AND THE KLEIN-
GORDON EQUATION 

 
        As we discussed above, Ward and Volkmer [29] demostrated the derivation 
of the Klein-Gordon equation (21) for a mass particle starting from its total 
relativistic energy  (20). They also showed that a non-relatistic 
approximation of the same energy (20) results in the Schrödinger time-dependent 
equation (23).  
       Usually the Klein-Gordon equation [30, 31] is applied for the description of 
an abstract relativistic particle that does not possess spin. However, the 
submicrscopic conept of physics presented in monograph [15] makes its possible 
to relate the Klein-Gordon equation to a real object, namely, a deformation coat 
that is developed around the mass particle created in the tessellatrice.  
        In fact the creation a particle means the appearance of a local deformatoion, 
i.e. a volumetric fractal deformation of the appropriate cell of the tesselllatice. The 
local deformation must induce a tension state in ambient cells, which may extend 
only to a definite radius R. So behind the radius R, the tessellattice does not have 
any distorsion, it is found here in a degenerate state.   
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        The study [15] shows that in the microworld such fundamental physical 
parameters as mass and charge vary at the motion. Namely, in a section (the even 
section) equal to the particle’s de Broglie wavelength l the mass m is transferred 
to a tension x and the charge e changes to the magnetic nomopole g. In the odd 
section l the mass and charge are restored. The same happened with cells that 
form the particle’s deformation coat. When the particle is moving, it pulls its 
deformation coat as well, i.e. ambient cells adjust to state of the particle. In the 
deformation coat the state of cells osciallates between the tension x and mass m. A 
collective oscillating mode of the deformation coat is specified by the energy [15] 

, which in turn equals the total energy of the particle .   
          The discussed oscillations can be descrbed by a plane wave mode 

  (17). Then following the arguments (17) – (21), we 
immediately derive the Klein-Gordon equation (21). Note in our case the particle 
that obeys the Klein-Gordon equation is the deformation coat that accompanies 
the moving particle. This deformation coat is specified with the radius equal to the 
particle’s Compton wavelength [15] (see p. 57). 
         If the speed u of a particle satisfies the inequality , we following 
reasoning (22) and (23) will arrive at the Schrödinger equation (23). 

 
DISCUSSION AND CONCLUSION 

 
We have discussed some weaknesses of the Schrödinger equation for 

description of atom and molecules. Then we have debated Shpenkov’s wave 
model of atom and molecules based on classical wave equation. His model is able 
to arrive at a periodic table of elements, which is close to Mendeleyev’s periodic 
law. We also have reviewed a plausible cellular automaton molecular model based 
on classical wave equation, as an alternative to Cellular automaton quantum 
mechanics.  

At last we have considered the submicrosicopc concept that allows one to 
easily derive the Schrödinger and Klein-Gordon equations starting from first 
submicrosopcic principles. It is intetesting that for the first time we now can 
identify the Klein-Gordon equation with a real object that is described by this 
equation – it is the particle’s deformation coat that is induced in the tessellattice at 
around the appropriate created canonical particle. 

The submicroscopic concept, which is based on space constituted as the 
tessellattice of primary topological balls, introduces a new physical field, namely 
the inerton field, which appears as a fundamental field of the universe. Inertons 
emerge at any motion of particles; in particular, they arise in atoms and around 
owing to uninterrupted motion of electrons, nuclei and nucleons.   

	 E = !ω 		mc2

  E(x, t) = E0 ei(k x−εt )

	υ << c
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Thus the motion of a quatum system is characterised by its separation to two 
joined subsystems: the particle itself and its inerton cloud. Their oscillation 
dynamics exhibits obvious features of the wave motion. Although the deformation 
coat that accompanies the moving particle behaves in a special way, it is described 
by the Klein-Gordon equation, which also manifests the wave properties. 

Our analysis shows that oscillations of inertons are present in any movement 
of a material object. Inertons clearly demonstrate wave behaviour.  This means 
that inerton oscillations appear in atoms and molecules. Hence inerton oscillations 
justify Shpenkov’s model [4–14], which applies a classical wave equation of 
sound to atoms and molecules: the wave funcation Y used by Shpenkov describes 
oscillations of an inerton field and the location of the corresponding nodes in the 
oscillating wave studied.    

Thus, quantum mechanical models, cellular automata, and a cellular 
automaton molecular model that uses a wave equation can be covered by studies 
originated from the tessellattice and the submicroscopic behaviour of quantum 
systems, which invloves an inerton field that binds canonical particles with the 
tessellattice and between themselves. Further investigations in this direction are 
recommended, which will shed light on the cornerstones of the microworld. 
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